Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673151

RESUMO

This work focuses on the comparison of H2 evolution in the hydrolysis of boron-containing hydrides (NaBH4, NH3BH3, and (CH2NH2BH3)2) over the Co metal catalyst and the Co3O4-based catalysts. The Co3O4 catalysts were activated in the reaction medium, and a small amount of CuO was added to activate Co3O4 under the action of weaker reducers (NH3BH3, (CH2NH2BH3)2). The high activity of Co3O4 has been previously associated with its reduced states (nanosized CoBn). The performed DFT modeling shows that activating water on the metal-like surface requires overcoming a higher energy barrier compared to hydride activation. The novelty of this study lies in its focus on understanding the impact of the remaining cobalt oxide phase. The XRD, TPR H2, TEM, Raman, and ATR FTIR confirm the formation of oxygen vacancies in the Co3O4 structure in the reaction medium, which increases the amount of adsorbed water. The kinetic isotopic effect measurements in D2O, as well as DFT modeling, reveal differences in water activation between Co and Co3O4-based catalysts. It can be assumed that the oxide phase serves not only as a precursor and support for the reduced nanosized cobalt active component but also as a key catalyst component that improves water activation.

2.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614426

RESUMO

This work describes the mathematical modeling of the thermal decomposition of the complex compound [Ni(En)3](ClO4)2 (En = C2H8N2 = ethylenediamine) in an inert atmosphere under non-isothermal conditions. This process is characterized by several simultaneous and intense stages: elimination of ethylenediamine from the nickel coordination sphere, decomposition of perchlorate anions, and explosive-like oxidation of free or bound ethylenediamine. These stages overlap and merge into a one step on the differential thermogravimetric curve. Typically, this curve is modeled as a one-stage process during kinetic analysis. In this paper, for the first time, the data from the dynamic mass-spectral thermal analysis and thermogravimetric analysis were modeled using the hybrid genetic algorithm, and the results were compared. A two-stage scheme of [Ni(En)3](ClO4)2 thermolysis was proposed and the kinetic parameters for each stage were obtained. It was shown that the decomposition of [Ni(En)3](ClO4)2 begins with the elimination of one molecule of ethylenediamine (stage A), then the perchlorate anions quickly decompose with the evolution of oxygen (stage B). We believe that the resulting ClO4-x- (x = 1-3), as stronger oxidizing agents, instantly start an explosive-like exothermic process of ethylenediamine oxidation (stage B).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA