Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6603): eabq1841, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35699621

RESUMO

The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.


Assuntos
Linfócitos B , Vacina BNT162 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Linfócitos T , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vacina BNT162/imunologia , Vacina BNT162/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , Reações Cruzadas , Humanos , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia
2.
Nat Commun ; 13(1): 1379, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296643

RESUMO

Anti tumour necrosis factor (anti-TNF) drugs increase the risk of serious respiratory infection and impair protective immunity following pneumococcal and influenza vaccination. Here we report SARS-CoV-2 vaccine-induced immune responses and breakthrough infections in patients with inflammatory bowel disease, who are treated either with the anti-TNF antibody, infliximab, or with vedolizumab targeting a gut-specific anti-integrin that does not impair systemic immunity. Geometric mean [SD] anti-S RBD antibody concentrations are lower and half-lives shorter in patients treated with infliximab than vedolizumab, following two doses of BNT162b2 (566.7 U/mL [6.2] vs 4555.3 U/mL [5.4], p <0.0001; 26.8 days [95% CI 26.2 - 27.5] vs 47.6 days [45.5 - 49.8], p <0.0001); similar results are also observed with ChAdOx1 nCoV-19 vaccination (184.7 U/mL [5.0] vs 784.0 U/mL [3.5], p <0.0001; 35.9 days [34.9 - 36.8] vs 58.0 days [55.0 - 61.3], p value < 0.0001). One fifth of patients fail to mount a T cell response in both treatment groups. Breakthrough SARS-CoV-2 infections are more frequent (5.8% (201/3441) vs 3.9% (66/1682), p = 0.0039) in patients treated with infliximab than vedolizumab, and the risk of breakthrough SARS-CoV-2 infection is predicted by peak anti-S RBD antibody concentration after two vaccine doses. Irrespective of the treatments, higher, more sustained antibody levels are observed in patients with a history of SARS-CoV-2 infection prior to vaccination. Our results thus suggest that adapted vaccination schedules may be required to induce immunity in at-risk, anti-TNF-treated patients.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Vacinas Virais , Anticorpos Monoclonais Humanizados/uso terapêutico , Vacina BNT162 , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infliximab/uso terapêutico , SARS-CoV-2 , Linfócitos T , Inibidores do Fator de Necrose Tumoral
3.
Immunology ; 166(1): 68-77, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156709

RESUMO

SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/genética , Vacinas contra COVID-19 , Cadeias HLA-DRB1/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , SARS-CoV-2
4.
Science ; 375(6577): 183-192, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34855510

RESUMO

The impact of the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infecting strain on downstream immunity to heterologous variants of concern (VOCs) is unknown. Studying a longitudinal healthcare worker cohort, we found that after three antigen exposures (infection plus two vaccine doses), S1 antibody, memory B cells, and heterologous neutralization of B.1.351, P.1, and B.1.617.2 plateaued, whereas B.1.1.7 neutralization and spike T cell responses increased. Serology using the Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. Neutralization potency fell differentially depending on targeted VOCs over the 5 months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.


Assuntos
Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vacina BNT162/administração & dosagem , Vacinas contra COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteção Cruzada , Feminino , Pessoal de Saúde , Humanos , Estudos Longitudinais , Masculino , Células B de Memória/imunologia , Mutação , Fosfoproteínas/imunologia , Domínios Proteicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinação , Potência de Vacina
5.
Front Immunol ; 12: 767359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966388

RESUMO

Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/imunologia , Linfócitos T/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Células Cultivadas , Diabetes Mellitus Tipo 2/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Masculino , Melioidose/microbiologia , Melioidose/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/metabolismo , Linfócitos T/microbiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia
6.
Science ; 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931567

RESUMO

SARS-CoV-2 vaccine rollout has coincided with the spread of variants of concern. We investigated if single dose vaccination, with or without prior infection, confers cross protective immunity to variants. We analyzed T and B cell responses after first dose vaccination with the Pfizer/BioNTech mRNA vaccine BNT162b2 in healthcare workers (HCW) followed longitudinally, with or without prior Wuhan-Hu-1 SARS-CoV-2 infection. After one dose, individuals with prior infection showed enhanced T cell immunity, antibody secreting memory B cell response to spike and neutralizing antibodies effective against B.1.1.7 and B.1.351. By comparison, HCW receiving one vaccine dose without prior infection showed reduced immunity against variants. B.1.1.7 and B.1.351 spike mutations resulted in increased, abrogated or unchanged T cell responses depending on human leukocyte antigen (HLA) polymorphisms. Single dose vaccination with BNT162b2 in the context of prior infection with a heterologous variant substantially enhances neutralizing antibody responses against variants.

7.
Elife ; 92020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331820

RESUMO

Here, we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.


Assuntos
Antibacterianos/uso terapêutico , COVID-19/complicações , Ativação Linfocitária , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , SARS-CoV-2 , Linfócitos T/imunologia , Antibacterianos/farmacologia , COVID-19/imunologia , COVID-19/terapia , Farmacorresistência Bacteriana Múltipla , Humanos , Pulmão/microbiologia , Masculino , Meropeném/farmacologia , Meropeném/uso terapêutico , Metagenômica , Pessoa de Meia-Idade , Combinação Piperacilina e Tazobactam/farmacologia , Combinação Piperacilina e Tazobactam/uso terapêutico , Pneumonia Associada à Ventilação Mecânica/diagnóstico por imagem , Pneumonia Associada à Ventilação Mecânica/etiologia , Infecções por Pseudomonas/diagnóstico por imagem , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/isolamento & purificação , Recidiva , Respiração Artificial
8.
Sci Immunol ; 5(54)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361161

RESUMO

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Infecções Assintomáticas , COVID-19/imunologia , Linfócitos T/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos de Casos e Controles , Estudos Transversais , Humanos , SARS-CoV-2/imunologia
9.
Yeast ; 35(3): 291-298, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29048745

RESUMO

The opportunistic fungal pathogen of humans Candida albicans is able to grow in different morphological forms such as round or oval yeasts and filamentous hyphae and pseudohyphae. Morphogenesis, the ability to switch between the yeast and filamentous growth forms, is important for adapting to new microenvironments in the human host and for pathogenesis. The molecular pathways governing morphogenesis are complex and incompletely understood. Previously, we identified several small organic molecules that specifically inhibit the initiation of hyphal growth in C. albicans without affecting cell viability or budded growth. One molecule from that screen is known to induce apoptosis in mammalian cells. In this study, we have screened additional inducers of mammalian apoptosis and identified BH3I-1, as well as several structural derivatives of BH3I-1, that act as specific inhibitors of morphogenesis under a variety of environmental conditions. Chemical epistasis experiments suggest that BH3I-1 acts downstream of the hypha-specific gene regulators Rfg1, Nrg1 and Ume6.


Assuntos
Candida albicans/efeitos dos fármacos , Tiazóis/farmacologia , Biologia Computacional , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Tiazóis/química , Tiazolidinedionas
10.
Fungal Genet Biol ; 43(8): 573-82, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16730201

RESUMO

The opportunistic fungal pathogen Candida albicans can grow as yeast, pseudohyphae or true hyphae. C. albicans can switch between these morphologies in response to various environmental stimuli and this ability to switch is thought to be an important virulence trait. In Saccharomyces cerevisiae, the Grr1 protein is the substrate recognition component of an SCF ubiquitin ligase that regulates cell cycle progression, cell polarity and nutrient signaling. In this study, we have characterized the GRR1 gene of C. albicans. Deletion of GRR1 from the C. albicans genome results in a highly filamentous, pseudohyphal morphology under conditions that normally promote the yeast form of growth. Under hypha-inducing conditions, most cells lacking GRR1 retain a pseudohyphal morphology, but some cells appear to switch to hyphal-like growth and express the hypha-specific genes HWP1 and ECE1. The C. albicans GRR1 gene also complements the elongated cell morphology phenotype of an S. cerevisiae grr1Delta mutant, indicating that C. albicans GRR1 encodes a true orthologue of S. cerevisaie Grr1. These results support the hypothesis that the Grr1 protein of C. albicans, presumably as the F-box subunit of an SCF ubiquitin ligase, has an essential role in preventing the switch from the yeast cell morphology to a pseudohyphal morphology.


Assuntos
Candida albicans/citologia , Candida albicans/genética , Regulação Fúngica da Expressão Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia , Candida albicans/fisiologia , Motivos F-Box/genética , Proteínas F-Box , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Deleção de Genes , Teste de Complementação Genética , Hifas/genética , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Genetics ; 161(3): 1065-75, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12136011

RESUMO

Large DNA palindromes form sporadically in many eukaryotic and prokaryotic genomes and are often associated with amplified genes. The presence of a short inverted repeat sequence near a DNA double-strand break has been implicated in the formation of large palindromes in a variety of organisms. Previously we have established that in Saccharomyces cerevisiae a linear DNA palindrome is efficiently formed from a single-copy circular plasmid when a DNA double-strand break is introduced next to a short inverted repeat sequence. In this study we address whether the linear palindromes form by an intermolecular reaction (that is, a reaction between two identical fragments in a head-to-head arrangement) or by an unusual intramolecular reaction, as it apparently does in other examples of palindrome formation. Our evidence supports a model in which palindromes are primarily formed by an intermolecular reaction involving homologous recombination of short inverted repeat sequences. We have also extended our investigation into the requirement for DNA double-strand break repair genes in palindrome formation. We have found that a deletion of the RAD52 gene significantly reduces palindrome formation by intermolecular recombination and that deletions of two other genes in the RAD52-epistasis group (RAD51 and MRE11) have little or no effect on palindrome formation. In addition, palindrome formation is dramatically reduced by a deletion of the nucleotide excision repair gene RAD1.


Assuntos
DNA Fúngico/genética , Proteínas de Ligação a DNA , Saccharomyces cerevisiae/genética , Sequência de Bases , Dano ao DNA , Reparo do DNA/genética , Enzimas Reparadoras do DNA , Endonucleases/genética , Amplificação de Genes , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Proteínas de Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA