Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 235: 500-510, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711835

RESUMO

Extreme disturbance events, such as wildfire and drought, have large impacts on carbon storage and sequestration of forests and woodlands globally. Here, we present a modelling approach that assesses the relative impact of disturbances on carbon storage and sequestration, and how this will alter under climate change. Our case study is semi-arid Australia where large areas of land are managed to offset over 122 million tonnes of anthropogenic carbon emissions over a 100-year period. These carbon offsets include mature vegetation that has been protected from clearing and regenerating vegetation on degraded agricultural land. We use a Bayesian Network model to combine multiple probabilistic models of the risk posed by fire, drought, grazing and recruitment failure to carbon dynamics. The model is parameterised from a review of relevant literature and additional quantitative analyses presented here. We found that the risk of vegetation becoming a net source of carbon due to a mortality event, or failing to realise maximum sequestration potential, through recruitment failure in regenerating vegetation, was primarily a function of rainfall in this semi-arid environment. However, the relative size of an emissions event varied across vegetation communities depending on plant attributes, specifically resprouting capacity. Modelled climate change effects were variable, depending on the climate change projection used. Under 'best-case' or 'most-likely' climate scenarios for 2050, similar or increased projections of mean annual precipitation, associated with a build-up of fuel, were expected to drive an increase in fire activity (a 40-160% increase), but a decrease in drought (a 20-35% decrease). Under a 'worst-case' climate scenario, fire activity was expected to decline (a 37% decrease), but drought conditions remain similar (a 5% decrease). These projected changes to the frequency of drought and fire increase the risk that vegetation used for carbon offsetting will fail to provide anticipated amounts of carbon abatement over their lifetime.


Assuntos
Carbono , Florestas , Austrália , Teorema de Bayes , Mudança Climática
2.
Ecology ; 93(6): 1275-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22834368

RESUMO

Tissue turnover is a critical facet of plant life history variation. This study quantifies losses from setbacks to growth of terminal woody shoots 1.2m long, across 83 species and seven sites in eastern Australia. Setbacks, where the leading meristem had been removed or died and a new leader had emerged, were common (median three per shoot). Shoots had lost an average of 0.25 m of lead-stem length for 1.2 m net shoot-length gain. Insects like girdlers and borers were prominent causes of large setbacks. The sites spanned tropical to temperate and humid to semiarid climates, but variation in stem loss was much greater across species than across sites. We measured 17 plant functional traits related to growth form, mechanics, hydraulics, and economics. Only four traits were correlated with variation across species in stem losses: stem diameter, stem nitrogen content, bark thickness, and maximum photosynthetic rate. The correlations were weak. Stem specific gravity (wood density) showed no correlation with risk. Our results suggest a pattern similar to the growth risk trade-off known for herbaceous plants, where traits associated with fast growth increase tissue turnover and herbivory, but the weak correlations leave ample scope for other influences that remain to be identified.


Assuntos
Ecossistema , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Plantas/classificação , Modelos Biológicos , New South Wales , Especificidade da Espécie
3.
New Phytol ; 193(1): 137-149, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21999247

RESUMO

• Wind is a key mechanical stress for woody plants, so how do shoot traits affect performance in wind? • We used a vehicle mounted apparatus to measure drag, streamlining and mechanical safety in 127 vertical lead-shoots, 1.2 m long, across 39 species in tropical Australia. • Shoot dimensions and stem tissue properties were closely coupled so that shoots with low stem specific gravity or larger projected area had thicker stems. Thicker stems provide larger second moment of area (I), which increased shoot safety and bending stiffness but impeded shoot reconfiguration in strong winds, including frontal area reduction. Nonetheless, increasing I also improved streamlining. Streamlining was unrelated to traits except I. Stem tissue material properties only had small effects. Higher modulus of rupture increased shoot safety and higher Young's modulus impeded shoot reconfiguration. • We found no conflict between bending stiffness and streamlining for woody shoots. Stiffness might help streamlining by increasing damping and stability, thereby reducing flagging in wind. Tissue-level traits did influence shoot-level mechanical safety and behaviour, but shoot geometry was much more important. Variable shoot and stem traits, which all influenced shoot biomechanics, were integrated in shoots to yield a relatively narrow range of outcomes in wind.


Assuntos
Brotos de Planta/fisiologia , Clima Tropical , Vento , Madeira/fisiologia , Austrália , Módulo de Elasticidade , Umidade , Modelos Biológicos , Brotos de Planta/anatomia & histologia , Característica Quantitativa Herdável , Análise de Regressão , Reologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA