Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(12): 2259-2269, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853184

RESUMO

Many microorganisms synthesise carbon (C)-rich compounds under resource deprivation. Such compounds likely serve as intracellular C-storage pools that sustain the activities of microorganisms growing on stoichiometrically imbalanced substrates, making them potentially vital to the function of ecosystems on infertile soils. We examined the dynamics and drivers of three putative C-storage compounds (neutral lipid fatty acids [NLFAs], polyhydroxybutyrate [PHB], and trehalose) across a natural gradient of soil fertility in eastern Australia. Together, NLFAs, PHB, and trehalose corresponded to 8.5-40% of microbial C and 0.06-0.6% of soil organic C. When scaled to "structural" microbial biomass (indexed by polar lipid fatty acids; PLFAs), NLFA and PHB allocation was 2-3-times greater in infertile soils derived from ironstone and sandstone than in comparatively fertile basalt- and shale-derived soils. PHB allocation was positively correlated with belowground biological phosphorus (P)-demand, while NLFA allocation was positively correlated with fungal PLFA : bacterial PLFA ratios. A complementary incubation revealed positive responses of respiration, storage, and fungal PLFAs to glucose, while bacterial PLFAs responded positively to PO43-. By comparing these results to a model of microbial C-allocation, we reason that NLFA primarily served the "reserve" storage mode for C-limited taxa (i.e., fungi), while the variable portion of PHB likely served as "surplus" C-storage for P-limited bacteria. Thus, our findings reveal a convergence of community-level processes (i.e., changes in taxonomic composition that underpin reserve-mode storage dynamics) and intracellular mechanisms (e.g., physiological plasticity of surplus-mode storage) that drives strong, predictable community-level microbial C-storage dynamics across gradients of soil fertility and substrate stoichiometry.


Assuntos
Carbono , Ecossistema , Carbono/química , Solo/química , Trealose , Fungos , Ácidos Graxos , Biomassa , Microbiologia do Solo , Fosfolipídeos
2.
Ecology ; 100(7): e02732, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30993678

RESUMO

Decadal-scale increases in fire frequency have the potential to deplete ecosystems of essential nutrients and consequently impede nutrient-limited biological processes via stoichiometric imbalance. Decomposition, a fundamental ecosystem function and strong driver of future fire occurrence, is highly sensitive to nutrient availability and is, therefore, particularly important in this context. Here we show that 40 yr of quadrennial (4yB) and biennial (2yB) prescribed burning result in severely P- and N-depleted litter stoichiometry, respectively, relative to fire exclusion. These effects exacerbated the nutrient limitation of microbial activities, constraining litter decomposition by 42.1% (4yB) and 23.6% (2yB) relative to unburned areas. However, invertebrate-driven decomposition largely compensated for the diminished capacity of micro-organisms under 4yB, suggesting that invertebrates could have an important stabilizing influence in fire-affected ecosystems. This effect was strongly positively coupled with the strength of microbial P-limitation and was not obviously or directly driven by fire regime-induced changes in invertebrate community assemblage. Together, our results reveal that high-frequency fire regimes promote nutrient-poor, carbon-rich ecosystem stoichiometry and, in doing so, disrupt ecosystem processes and modify the relative functionality of micro-organisms and invertebrates.


Assuntos
Ecossistema , Incêndios , Animais , Carbono , Invertebrados , Nitrogênio , Solo
3.
Sci Total Environ ; 664: 841-850, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30769308

RESUMO

The construction and operation of the Three Gorges Reservoir (TGR), the largest hydropower dam in the world, has had significant consequences for the hydrology of riparian zones along the Yangtze river. Little is known about how such changes in hydrology might affect the levels of nutrients and organic matter (OM) in riparian soils. We conducted a nine-year study on the spatio-temporal dynamics and dominant environmental correlates of nutrients and OM in riparian soils along a 600 km section of the Yangtze. These soils have been exposed to a disrupted hydrological regime since the TGR's establishment in 2008. Vegetation surveys were also conducted from 2012 to 2016 to assess relationships between soil chemical properties and vegetation community properties under altered hydrology. Across the stream gradient, concentrations of total potassium (K) increased by 54% since the TGR's establishment. The opposite occurred for SOM and available K, concentrations of which were 35% and 33% lower in 2016, respectively, than those of 2008. The rate of increase in total K tended to be more rapid at the middle section of the stream gradient. Moreover, concentrations of SOM, total N, total K, and available phosphorus (P) and K tended to be particularly high at the middle section. The spatio-temporal distributions of nutrients were strongly positively related to the contents of fine soil particles (i.e., silt and clay). Moreover, the aboveground biomass was negatively correlated with the nutrient dynamics. Our results indicate that the control of the nutrient release in the middle reaches and lower elevations where fine particles tend to accumulate, will be essential for maintaining the health of aquatic and riparian ecosystems upstream of the TGR.

4.
Sci Total Environ ; 651(Pt 2): 1935-1945, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317180

RESUMO

Riparian ecosystems are particularly prone to heavy metal (HM) contamination, acting as a sink for HMs coming from human activities upstream or on adjacent uplands. An advanced understanding of the spatio-temporal dynamics, environmental drivers and the likely sources of HM contamination in riparian soils will be necessary for the conservation of riparian ecosystems. Thus, we conducted a nine-year study across a 600 km stream gradient along the Yangtze river, which has come under immense pressure in recent years partly due to the establishment of the Three Gorges Dam (TGD), the largest hydropower dam in the world. Levels of soil As, Cr, Pb, and Cu in the TGD's water level fluctuation zone (WLFZ) have consistently increased since the TGD's establishment. This increase tended to be more rapid at the upstream reaches of the WLFZ, where most HMs (As, Cd, Pb, Cu, and Zn) also tended to be particularly high. Our analyses suggest that the spatio-temporal dynamics of these metals are strongly influenced by soil phosphorus (P), organic matter, texture and manganese. In many cases HM levels exceeded acceptable pollution levels according to multiple indices. However, from 2008 to 2010 Hg and Cd presented great threat to ecosystem health, but from 2011 to 2016 levels of As and Pb became the primary concern due to increases in their concentrations of 152 and 38%, respectively, relative to 2009 levels. Factor analysis indicated that the major identifiable anthropogenic sources of HMs were traffic exhaust, sources associated with organic matter output (e.g. sewage), and sources associated with P output (e.g. agricultural runoff), with the latter generally dominant in the upper and middle reaches of the TGD watershed. These results indicate that the prioritization of As and Pb pollution and control of agricultural runoff will play an important role in the ecological protection in the TGR's riparian ecosystems.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , China , Ecossistema , Estações do Ano , Análise Espacial
5.
Ecol Lett ; 21(3): 335-344, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314550

RESUMO

The biogeochemical and stoichiometric signature of vegetation fire may influence post-fire ecosystem characteristics and the evolution of plant 'fire traits'. Phosphorus (P), a potentially limiting nutrient in many fire-prone environments, might be particularly important in this context; however, the effects of fire on P cycling often vary widely. We conducted a global-scale meta-analysis using data from 174 soil studies and 39 litter studies, and found that fire led to significantly higher concentrations of soil mineral P as well as significantly lower soil and litter carbon:P and nitrogen:P ratios. These results demonstrate that fire has a P-rich signature in the soil-plant system that varies with vegetation type. Further, they suggest that burning can ease P limitation and decouple the biogeochemical cycling of P, carbon and nitrogen. These effects resemble a transient reversion to an earlier stage of ecosystem development, and likely underpin at least some of fire's impacts on ecosystems and organisms.


Assuntos
Incêndios , Fósforo , Plantas , Solo , Carbono , Ecossistema , Nitrogênio
6.
Environ Pollut ; 220(Pt B): 946-954, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27836471

RESUMO

Char as a carbon-rich material, can be produced under pyrolytic conditions, wildfires or prescribed burn offs for fire management. The objective of this study was to elucidate mechanistic interactions of copper (Cu2+) and nickel (Ni2+) with different chars produced by pyrolysis (green waste, GW; blue-Mallee, BM) and forest fires (fresh-burnt by prescribed fire, FC; aged char produced by wild fire, AC). The pyrolytic chars were more effective sorbents of Cu2+ (∼11 times) and Ni2+ (∼5 times) compared with the forest fire chars. Both cross-polarization (CPMAS-NMR) and Bloch decay (BDMAS-NMR) 13C NMR spectroscopies showed that forest fire chars have higher woody components (aromatic functional groups) and lower polar groups (e.g. O-alkyl C) compared with the pyrolytic chars. The polarity index was greater in the pyrolytic chars (0.99-1.34) than in the fire-generated chars (0.98-1.15), while aromaticity was lower in the former than in the latter. Fourier transform infrared (FTIR) and Raman spectroscopies indicated the binding of carbonate and phosphate with both Cu2+ and Ni2+ in all chars, but with a greater extent in pyrolytic than forest fire-generated chars. These findings have demonstrated the key role of char's oxygen-containing functional groups in determining their sorption capacity for the Cu2+ and Ni2+ in contaminated lands.


Assuntos
Carbono/química , Cobre/química , Poluentes Ambientais/química , Níquel/química , Oxigênio/química , Adsorção , Animais , Incêndios , Florestas , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA