Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 103(6): e14569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877369

RESUMO

Staphylococcus aureus has the ability to invade cortical bone osteocyte lacuno-canalicular networks (OLCNs) and cause osteomyelitis. It was recently established that the cell wall transpeptidase, penicillin-binding protein 4 (PBP4), is crucial for this function, with pbp4 deletion strains unable to invade OLCNs and cause bone pathogenesis in a murine model of S. aureus osteomyelitis. Moreover, PBP4 has recently been found to modulate S. aureus resistance to ß-lactam antibiotics. As such, small molecule inhibitors of S. aureus PBP4 may represent dual functional antimicrobial agents that limit osteomyelitis and/or reverse antibiotic resistance. A high throughput screen recently revealed that the phenyl-urea 1 targets PBP4. Herein, we describe a structure-activity relationship (SAR) study on 1. Leveraging in silico docking and modeling, a set of analogs was synthesized and assessed for PBP4 inhibitory activities. Results revealed a preliminary SAR and identified lead compounds with enhanced binding to PBP4, more potent antibiotic resistance reversal, and diminished PBP4 cell wall transpeptidase activity in comparison to 1.


Assuntos
Antibacterianos , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas , Staphylococcus aureus , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ureia/química , Ureia/farmacologia , Ureia/análogos & derivados , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores
2.
Front Cell Infect Microbiol ; 10: 605662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384970

RESUMO

Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Coenzima A , Humanos , Tuberculose/tratamento farmacológico , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA