Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(37): 14953-14962, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285745

RESUMO

The analysis of colloid-associated trace elements (TEs) in acidic, organic-rich waters (pH 3.8-5.8) using AF4-UV-ICPMS often necessitates the use of neutral or weakly alkaline carriers (pH 7-8.6). Employing acidic mobile phases has been deemed impractical due to the substantial sorption of colloids onto a 0.3 kDa polyethersulfone (PES) membrane and greatly reduced separation performance. This has greatly restricted the determination of potentially bioavailable forms of TEs (i.e., < 1 kDa) in acidic, organic-rich waters. To address this issue, porewaters from Sphagnum moss and peat were investigated. Membrane clogging was more pronounced in peat porewaters, where a higher deposition rate of dissolved organic matter onto the membrane was observed compared to that in moss waters. This adsorption is driven by membrane-colloid interactions, with colloids in peat porewaters exhibiting weaker electrostatic repulsion due to their higher positive ζ-potentials. Considering the actual pore size and clogging tolerance of the membrane, it is advisable to employ a 5 kDa PES membrane for peat porewaters, while a 1 kDa PES membrane suits moss waters better. Employing the optimal method enables the separation of TEs within the 0.5-20 kDa size range. Operating within a metal-free, ultraclean laboratory, TEs are detectable at the ng·L-1 level. By enabling precise and accurate separation of dissolved TEs into their size species in these peat bog waters at an appropriate pH, this method addresses diverse size profiles. This information is crucial for comprehending the chemical forms, transformations, mobility, and potential bioavailability of TEs in peat bogs.

2.
Environ Pollut ; 345: 123470, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307240

RESUMO

Considerable volumes of dust are generated from open-pit bitumen mining operations in northern Alberta, Canada. The reactive mineral phases of these dust particles can potentially dissolve in acidic (pH < 4) bog waters. Their dissolution could release trace elements (TEs), which could eventually alter these bog ecosystems. The impact of dust dissolution on the abundance of TEs in the dissolved (<0.45 µm) fraction of porewaters from excavated pits (30-40 cm deep) in the ombrogenic zone of five peatlands was evaluated. Porewaters were collected from four bogs situated within 70 km of mines and upgraders in the Athabasca Bituminous Sands (ABS) region, Alberta, Canada, and from a reference bog situated 264 km away. Over two consecutive years, the dissolved concentrations of some conservative (Al, Th, Y) and mobile lithophile elements (Fe, Li, Mn, Sr), as well as the metals enriched in bitumen (V, Ni, Mo), all increased with proximity to the mining area, in the ABS region. These trends reflect the observed increase in dust deposition with proximity to the mining area from independent studies of snow, lichens, and Sphagnum moss. Contrarily, the impact of dust dissolution on the concentration of potentially toxic TEs (As, Cd, Pb, Sb, and Tl) was negligible. Thus, the elements which are more abundant in the porewaters near industry are either ecologically benign (e.g. Li and Sr) or essential micronutrients (e.g. Fe, Mn, Ni, and Mo). Manganese was the only element which was enriched by more than 10x at all sites near the mining area, compared to its concentration at the reference site. The enrichments of all other elements were <10x, indicating that anthropogenic dust emissions from mining areas have had only a modest effect on the TEs abundance in peat porewaters.


Assuntos
Hidrocarbonetos , Areia , Oligoelementos , Oligoelementos/análise , Solo , Áreas Alagadas , Monitoramento Ambiental , Poeira/análise , Ecossistema , Alberta , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA