Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(9): 4661-4668, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38375793

RESUMO

Single-atom (SA) decoration has emerged as a frontier in catalysis due to its unique characteristics. Recently, decorated Pt single atoms on titania have shown promise in photocatalytic hydrogen evolution. In this work, we demonstrate that Pt SAs can spontaneously deposit on the surface, driven by electrostatic forces; the key is to determine the golden pH and surface potential. We conducted a comprehensive investigation into the influence of the pH of the deposition precursor on the spontaneous adsorption of Pt SAs onto TiO2 nanosheets (TiNSs). We introduced a straightforward pH-dependent and charge-dependent strategy for the solid electrostatic anchoring of Pt SAs on TiO2. Furthermore, we established that the level of Pt loading can be controlled by adjusting the precursor pH. X-ray photoelectron spectroscopy (XPS) and high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) were used to evaluate the Pt SA-decorated samples. Photocatalytic hydrogen production activity was assessed under ultraviolet (UV) (365 nm) irradiation. Notably, we found that at a pH of 8, slightly below the measured point of zero charge (PZC), a unique mixture of Pt clusters and single atoms was deposited on the surface of TiNSs. This unique composition significantly improved hydrogen production, resulting in ∼3.7 mL of hydrogen generated after 8 h of UV exposure by only 10 mg of the Pt-decorated TiNS (with Pt loadings of 0.12 at. %), which is ∼300 times higher than the undecorated TiNS.

2.
ACS Appl Eng Mater ; 1(3): 947-954, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37008885

RESUMO

Electrochemically exfoliated graphene (e-G) thin films on Nafion membranes exhibit a selective barrier effect against undesirable fuel crossover. This approach combines the high proton conductivity of state-of-the-art Nafion and the ability of e-G layers to effectively block the transport of methanol and hydrogen. Nafion membranes are coated with aqueous dispersions of e-G on the anode side, making use of a facile and scalable spray process. Scanning transmission electron microscopy and electron energy-loss spectroscopy confirm the formation of a dense percolated graphene flake network, which acts as a diffusion barrier. The maximum power density in direct methanol fuel cell (DMFC) operation with e-G-coated Nafion N115 is 3.9 times higher than that of the Nafion N115 reference (39 vs 10 mW cm-2@0.3 V) at a 5M methanol feed concentration. This suggests the application of e-G-coated Nafion membranes for portable DMFCs, where the use of highly concentrated methanol is desirable.

3.
Nano Lett ; 23(6): 2074-2080, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36862532

RESUMO

Terahertz (THz) radiation is a valuable tool to investigate the electronic properties of lead halide perovskites (LHPs). However, attaining high-resolution information remains elusive, as the diffraction-limited spatial resolution (∼300 µm) of conventional THz methods prevents a direct analysis of microscopic effects. Here, we employ THz scattering scanning near-field optical microscopy (THz-sSNOM) for nanoscale imaging of cesium lead bromide (CsPbBr3) thin films down to the single grain level at 600 GHz. Adopting a scattering model, we are able to derive the local THz nanoscale conductivity in a contact-free fashion. Increased THz near-field signals at CsPbBr3 grain boundaries complemented by correlative transmission electron microscopy-energy-dispersive X-ray spectroscopy elemental analysis point to the formation of halide vacancies (VBr) and Pb-Pb bonds, which induce charge carrier trapping and can lead to nonradiative recombination. Our study establishes THz-sSNOM as a powerful THz nanoscale analysis platform for thin-film semiconductors such as LHPs.

4.
Digit Health ; 8: 20552076221134448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386248

RESUMO

Objective: Models explaining technology acceptance fail to recognize the influence temporary, compulsory usage, meaning forced usage due to external factors, may have on user evaluation and continued diffusion. However, in context of the Covid-19 pandemic, a highly infectious respiratory disease, the significance of this factor is evident. Triggered by legal contact restrictions and extended reimbursement capacities, usage of telepsychotherapy increased drastically, thereby influencing therapists' attitude and increasing the technology's maturity. In this comprehensive literature review, we aim to outline the current state of research toward telepsychotherapy adoption and identify potential influences of the compulsory usage on the reevaluation of technology as well as barriers inhibiting and factors promoting future use. Methods: The review was conducted on the five databases ScienceDirect, Web of Science, PubMed, PubPsych, and IEEE up to April 2022. Results: Out of 685 identified references, a final selection was made of 22 papers, discussing experiences with telepsychotherapy in the context of the Covid-19 pandemic. Satisfaction and intention to use are universally high, further increasing with time and use experience, while perceived challenges decrease. Barriers include mostly contextual factors, such as technical issues, reimbursement issues, strict regulations, insufficient infrastructure, and lack of organizational support, but also concerns regarding efficacy. Promoting factors are training, guidelines, and organizational support. Conclusions: Telepsychohtherapy has become an integral part of psychotherapeutic care. A hybrid system in close coordination between provider and patient may prevail, addressing individual needs of both parties to achieve optimal care and provider well-being. This requires transparent regulations, guidelines, and standards.

5.
Nanoscale ; 14(40): 15165-15180, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36214128

RESUMO

Many European sculptures and altarpieces from the Middle Ages were decorated with Zwischgold, a bilayer metal leaf with an ultra-thin gold face backed by silver. Zwischgold corrodes quickly when exposed to air, causing the surface of the artefact to darken and lose gloss. The conservation of such Zwischgold applied artefacts has been an obstinate problem. We have acquired quantitative, 3D nanoscale images of Zwischgold samples from 15th century artefacts and modern materials using ptychographic X-ray computed tomography (PXCT), a recently developed coherent diffractive imaging technique, to investigate the leaf structure and chemical state of Zwischgold. The measurements clearly demonstrate decreasing density (increasing porosity) of the leaf materials and their corrosion products, as well as delamination of the leaves from their substrate. Each of these effects speak to typically observed issues in the conservation of such Zwischgold applied artefacts. Further, a rare variant of Zwischgold that contains extremely thin multiple gold layers and an overlapping phenomenon of Zwischgold with other metal leaves are observed through PXCT. As supportive data, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray analysis (EDX) were performed on the medieval samples.

6.
Sci Rep ; 12(1): 10178, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715553

RESUMO

A large and growing number of applications benefit from simple, fast and highly sensitive 3D imaging sensors. The Focus-Induced Photoresponse (FIP) can achieve 3D sensing functionalities by simply evaluating the irradiance dependent nonlinear sensor response in defect-based materials. Since this advantage is intricately associated to a slow response, the electrical bandwidth of present FIP detectors is limited to a few [Formula: see text] only. The devices presented in this work enable modulation frequencies of 700 kHz and beat frequency detection up to at least 3.8 MHz, surpassing the bandwidth of reported device architectures by more than two orders of magnitude. The sensors achieve a SNR of at least [Formula: see text] at [Formula: see text] and a DC FIP detection limit of 0.6 µW/mm2. The mature and scalable low-temperature a-Si:H process technology allows operating the device under ambient air conditions waiving additional back-end passivation, geometrical fill factors of [Formula: see text] and tailoring the FIP towards adjustable 3D sensing applications.


Assuntos
Imageamento Tridimensional , Silício
7.
Healthcare (Basel) ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35455824

RESUMO

In the past 20 years, a vast amount of research has shown that Augmented and Mixed Reality applications can support physical exercises in medical rehabilitation. In this paper, we contribute a taxonomy, providing an overview of the current state of research in this area. It is based on a comprehensive literature review conducted on the five databases Web of Science, ScienceDirect, PubMed, IEEE Xplore, and ACM up to July 2021. Out of 776 identified references, a final selection was made of 91 papers discussing the usage of visual stimuli delivered by AR/MR or similar technology to enhance the performance of physical exercises in medical rehabilitation. The taxonomy bridges the gap between a medical perspective (Patient Type, Medical Purpose) and the Interaction Design, focusing on Output Technologies and Visual Guidance. Most approaches aim to improve autonomy in the absence of a therapist and increase motivation to improve adherence. Technology is still focused on screen-based approaches, while the deeper analysis of Visual Guidance revealed 13 distinct, reoccurring abstract types of elements. Based on the analysis, implications and research opportunities are presented to guide future work.

8.
Biomed Opt Express ; 13(2): 539-548, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284167

RESUMO

We investigate a model bioassay in a liquid environment using a z-scanning planar Yagi-Uda antenna, focusing on the fluorescence collection enhancement of ATTO-647N dye conjugated to DNA (deoxyribonucleic acid) molecules. The antenna changes the excitation and the decay rates and, more importantly, the emission pattern of ATTO-647N, resulting in a narrow emission angle (41°) and improved collection efficiency. We efficiently detect immobilized fluorescently-labeled DNA molecules, originating from solutions with DNA concentrations down to 1 nM. In practice, this corresponds to an ensemble of fewer than 10 ATTO-647N labeled DNA molecules in the focal area. Even though we use only one type of biomolecule and one immobilization technique to establish the procedure, our method is versatile and applicable to any immobilized, dye-labeled biomolecule in a transparent solid, air, or liquid environment.

9.
ACS Appl Mater Interfaces ; 13(40): 47488-47498, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606719

RESUMO

All solid-state batteries offer the possibility of increased safety at potentially higher energy densities compared to conventional lithium-ion batteries. In an all-ceramic oxide battery, the composite cathode consists of at least one ion-conducting solid electrolyte and an active material, which are typically densified by sintering. In this study, the reaction of the solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) and the active material LiNi0.6Co0.2Mn0.2O2 (NCM622) is investigated by cosintering at temperatures between 550 and 650 °C. The characterization of the composites and the reaction layer is performed by optical dilatometry, X-ray diffractometry, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy, time-of-flight secondary ion mass spectrometry, as well as scanning transmission electron microscopy (STEM). Even at low sintering temperatures, elemental diffusion occurs between the two phases, which leads to the formation of secondary phases and decomposition reactions of the active material and the solid electrolyte. As a result, the densification of the composite is prevented and ion-conducting paths between individual particles cannot be formed. Based on the experimental results, a mechanism of the reactions in cosintered LATP and NCM622 oxide composite cathodes is suggested.

10.
J Appl Crystallogr ; 53(Pt 5): 1310-1320, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33117111

RESUMO

Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to ∼3 µm resulting in strain variation of ∼2.5% in the NW core are found.

11.
Environ Sci Technol ; 54(14): 8681-8689, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539366

RESUMO

The increasing use of manufactured nanomaterials (MNMs) and their inevitable release into the environment, especially via wastewater treatment plants (WWTPs), poses a potential threat for aquatic organisms. The characterization of MNMs with analytical tools to comprehend their fate and effect on the ecosystem is hence of great importance for environmental risk assessment. We herein report, for the first time, the investigation of physicochemical transformation processes during artificial wastewater treatment of silver (Ag-NPs) and titanium dioxide nanoparticles (TiO2-NPs) via selected area electron diffraction (SAED). TiO2-NPs with an anatase/rutile ratio of ∼80/20 were found to not undergo any physicochemical transformation, as shown via previous energy-dispersive X-ray analysis (EDX) elemental mapping and crystal structure analysis via SAED. In contrast, Ag-NPs were colocalized with substantial amounts of sulfur (Ag/S ratio of 1.9), indicating the formation of Ag2S. SAED ultimately proved the complete transformation of face-centered cubic (fcc) Ag-NPs into monoclinic Ag2S-NPs. The size distribution of both nanomaterials remained virtually unchanged. Our investigations show that cloud point extraction of NPs and their subsequent crystal structure analysis via SAED is another valuable approach toward the comprehensive investigation of wastewater-borne MNMs. However, the extraction procedure needs optimization for environmentally low NP concentrations.


Assuntos
Nanopartículas Metálicas , Prata , Ecossistema , Elétrons , Titânio , Águas Residuárias
12.
Science ; 358(6362): 506-510, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29074771

RESUMO

Whereas standard transmission electron microscopy studies are unable to preserve the native state of chemically reactive and beam-sensitive battery materials after operation, such materials remain pristine at cryogenic conditions. It is then possible to atomically resolve individual lithium metal atoms and their interface with the solid electrolyte interphase (SEI). We observe that dendrites in carbonate-based electrolytes grow along the <111> (preferred), <110>, or <211> directions as faceted, single-crystalline nanowires. These growth directions can change at kinks with no observable crystallographic defect. Furthermore, we reveal distinct SEI nanostructures formed in different electrolytes.

13.
Nano Lett ; 17(8): 5171-5178, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692280

RESUMO

Lithium (Li) metal is a high-capacity anode material (3860 mAh g-1) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O2), nitrogen (N2), and water vapor (H2O). We find that while dry O2 and N2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

14.
Sci Adv ; 3(4): e1603119, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508050

RESUMO

The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template.


Assuntos
Borboletas , Retículo Endoplasmático , Membranas Intracelulares , Nanoestruturas/ultraestrutura , Pigmentos Biológicos/metabolismo , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura
15.
Ultramicroscopy ; 176: 161-169, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28049586

RESUMO

With the recent advances in instrumentation pushing the limits of in situ transmission electron microscopy, the question of local sample temperature comes into focus again. In this work the applicability of parallel beam electron diffraction to locally measure and monitor the sample temperature in TEM is assessed, with applications for in situ heating experiments in mind. With Au nanoparticles applied to the sample surface, temperature is measured in the range from RT to 890°C by evaluating the change in scattering angle upon thermal expansion. Repeated measurements at constant temperature reveal a statistical precision of the method as good as 2.8K. The applicability to locally measure the temperature is demonstrated mapping the temperature gradient across a heating chip. Owing to instantaneous response of thermal expansion to temperature changes, the method is well suited for monitoring even quick temperature changes, as demonstrated by quenching experiments. In order to enable extensive in situ studies, an evaluation method capable of processing large datasets with high precision is developed. Beam parallelity is identified as crucial experimental prerequisite and a routine is established, optimizing the microscope alignment in terms of beam parallelity. Apart from establishing a procedure for local temperature measurement, the present work demonstrates the unique capabilities of MEMS-based in situ heating equipment.

16.
Anat Sci Educ ; 10(1): 46-52, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27273871

RESUMO

Tuebingen's Sectio Chirurgica (TSC) is an innovative, interactive, multimedia, and transdisciplinary teaching method designed to complement dissection courses. The Tuebingen's Sectio Chirurgica (TSC) allows clinical anatomy to be taught via interactive live stream surgeries moderated by an anatomist. This method aims to provide an application-oriented approach to teaching anatomy that offers students a deeper learning experience. A cohort study was devised to determine whether students who participated in the TSC were better able to solve clinical application questions than students who did not participate. A total of 365 students participated in the dissection course during the winter term of the 2012/2013 academic year. The final examination contained 40 standard multiple-choice (S-MC) and 20 clinically-applied multiple-choice (CA-MC) items. The CA-MC items referred to clinical cases but could be answered solely using anatomical knowledge. Students who regularly participated in the TSC answered the CA-MC questions significantly better than the control group (75% and 65%, respectively; P < 0.05, Mann-Whitney U test). The groups exhibited no differences on the S-MC questions (85% and 82.5%, respectively; P > 0.05). The CA-MC questions had a slightly higher level of difficulty than the S-MC questions (0.725 and 0.801, respectively; P = 0.083). The discriminatory power of the items was comparable (S-MC median Pearson correlations: 0.321; CA-MC: 0.283). The TSC successfully teaches the clinical application of anatomical knowledge. Students who attended the TSC in addition to the dissection course were able to answer CA-MC questions significantly better than students who did not attend the TSC. Thus, attending the TSC in addition to the dissection course supported students' clinical learning goals. Anat Sci Educ 10: 46-52. © 2016 American Association of Anatomists.


Assuntos
Anatomia/educação , Dissecação/educação , Educação de Graduação em Medicina/métodos , Aprendizagem Baseada em Problemas/métodos , Adulto , Anatomistas , Cadáver , Estudos de Coortes , Currículo , Avaliação Educacional , Feminino , Alemanha , Humanos , Aprendizagem , Masculino , Estudantes de Odontologia , Estudantes de Medicina , Webcasts como Assunto , Adulto Jovem
17.
Angew Chem Int Ed Engl ; 55(51): 15771-15774, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27865029

RESUMO

Controlling the chemistry of graphene is necessary to enable applications in materials and life sciences. Research beyond graphene oxide is targeted to avoid the highly defective character of the carbon framework. Herein, we show how to optimize the synthesis of oxo-functionalized graphene (oxo-G) to prepare high-quality monolayer flakes that even allow for direct transmission electron microscopy investigation at atomic resolution (HRTEM). The role of undesired residuals is addressed and sources are eliminated. HRTEM provides clear evidence for the exceptional integrity of the carbon framework of such oxo-G sheets. The patchy distribution of oxo-functionality on the nm-scale, observed on our highly clean oxo-G sheets, corroborates theoretical predictions. Moreover, defined electron-beam irradiation facilitates gentle de-functionalization of oxo-G sheets, a new route towards clean graphene, which is a breakthrough for localized graphene chemistry.

18.
Nanotechnology ; 27(42): 425703, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27622904

RESUMO

The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.

19.
Proc Natl Acad Sci U S A ; 112(42): 12911-6, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438839

RESUMO

The wing scales of the Green Hairstreak butterfly Callophrys rubi consist of crystalline domains with sizes of a few micrometers, which exhibit a congenitally handed porous chitin microstructure identified as the chiral triply periodic single-gyroid structure. Here, the chirality and crystallographic texture of these domains are investigated by means of electron tomography. The tomograms unambiguously reveal the coexistence of the two enantiomeric forms of opposite handedness: the left- and right-handed gyroids. These two enantiomers appear with nonequal probabilities, implying that molecularly chiral constituents of the biological formation process presumably invoke a chiral symmetry break, resulting in a preferred enantiomeric form of the gyroid structure. Assuming validity of the formation model proposed by Ghiradella H (1989) J Morphol 202(1):69-88 and Saranathan V, et al. (2010) Proc Natl Acad Sci USA 107(26):11676-11681, where the two enantiomeric labyrinthine domains of the gyroid are connected to the extracellular and intra-SER spaces, our findings imply that the structural chirality of the single gyroid is, however, not caused by the molecular chirality of chitin. Furthermore, the wing scales are found to be highly textured, with a substantial fraction of domains exhibiting the <001> directions of the gyroid crystal aligned parallel to the scale surface normal. Both findings are needed to completely understand the photonic purpose of the single gyroid in gyroid-forming butterflies. More importantly, they show the level of control that morphogenesis exerts over secondary features of biological nanostructures, such as chirality or crystallographic texture, providing inspiration for biomimetic replication strategies for synthetic self-assembly mechanisms.


Assuntos
Borboletas/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Microscopia Eletrônica de Transmissão e Varredura , Asas de Animais/ultraestrutura
20.
Phys Chem Chem Phys ; 17(28): 18278-81, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26123655

RESUMO

We investigate the resistivity switching in individual Ag-TCNQ wires with on/off-ratios of up to 10(3). Raman and soft X-ray absorption microspectroscopy studies disclose reverse charge transfer. Quantifying of the fraction of neutral TCNQ within the switched material yields values up to 22.3%. These findings expedite the understanding of the switching process in Ag-TCNQ nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA