Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1387196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015378

RESUMO

Abnormal ß-amyloid (Aß) accumulation in the brain is an early indicator of Alzheimer's disease (AD) and is typically assessed through invasive procedures such as PET (positron emission tomography) or CSF (cerebrospinal fluid) assays. As new anti-Alzheimer's treatments can now successfully target amyloid pathology, there is a growing interest in predicting Aß positivity (Aß+) from less invasive, more widely available types of brain scans, such as T1-weighted (T1w) MRI. Here we compare multiple approaches to infer Aß + from standard anatomical MRI: (1) classical machine learning algorithms, including logistic regression, XGBoost, and shallow artificial neural networks, (2) deep learning models based on 2D and 3D convolutional neural networks (CNNs), (3) a hybrid ANN-CNN, combining the strengths of shallow and deep neural networks, (4) transfer learning models based on CNNs, and (5) 3D Vision Transformers. All models were trained on paired MRI/PET data from 1,847 elderly participants (mean age: 75.1 yrs. ± 7.6SD; 863 females/984 males; 661 healthy controls, 889 with mild cognitive impairment (MCI), and 297 with Dementia), scanned as part of the Alzheimer's Disease Neuroimaging Initiative. We evaluated each model's balanced accuracy and F1 scores. While further tests on more diverse data are warranted, deep learning models trained on standard MRI showed promise for estimating Aß + status, at least in people with MCI. This may offer a potential screening option before resorting to more invasive procedures.

2.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370641

RESUMO

Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort). We first benchmark our models by predicting 'brain age' - the task of predicting a person's chronological age from their MRI scan and proceed to AD classification. We also evaluate the benefit of using a 3D CycleGAN approach to harmonize the imaging datasets before training the CNN models. Our experiments show that classification performance improves after harmonization in most cases, as well as better performance for dMRI as input.

3.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824826

RESUMO

Abnormal ß-amyloid (Aß) accumulation in the brain is an early indicator of Alzheimer's disease and practical tests could help identify patients who could respond to treatment, now that promising anti-amyloid drugs are available. Even so, Aß positivity (Aß+) is assessed using PET or CSF assays, both highly invasive procedures. Here, we investigate how well Aß+ can be predicted from T1 weighted brain MRI and gray matter, white matter and cerebrospinal fluid segmentations from T1-weighted brain MRI (T1w), a less invasive alternative. We used 3D convolutional neural networks to predict Aß+ based on 3D brain MRI data, from 762 elderly subjects (mean age: 75.1 yrs. ± 7.6SD; 394F/368M; 459 healthy controls, 67 with MCI and 236 with dementia) scanned as part of the Alzheimer's Disease Neuroimaging Initiative. We also tested whether the accuracy increases when using transfer learning from the larger UK Biobank dataset. Overall, the 3D CNN predicted Aß+ with 76% balanced accuracy from T1w scans. The closest performance to this was using white matter maps alone when the model was pre-trained on an age prediction in the UK Biobank. The performance of individual tissue maps was less than the T1w, but transfer learning helped increase the accuracy. Although tests on more diverse data are warranted, deep learned models from standard MRI show initial promise for Aß+ estimation, before considering more invasive procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA