Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 79(22-23): 1094-1105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27924716

RESUMO

Indoor allergens are among the main causes of allergic rhinitis and asthma. Allergen exposure is not limited to private homes. Mite, cat, and dog allergens were measured in day care centers to determine whether these concentrations detected might exert significant influence on human health. In 20 day care centers across North Rhine-Westphalia, Germany, the surfaces of 171 rooms were vacuumed 4 times a year to collect dust (1340 samples in total). In all samples, domestic mite antigens (DM) and the main allergens of cats (Fel d 1) and dogs (Can f 1) were quantified using enzyme immunoassays. Provisional threshold limits (PTL) for increased risks of sensitization and allergic symptoms were estimated according to published values and conversion factors. The influence of room characteristics on allergen concentrations was analyzed in mixed linear models, also considering values below the limit of detection (LOD). Nearly all samples contained allergens (99% DM, 96% Fel d 1, and 96% Can f 1). The concentrations rarely exceeded levels that were previously found to induce symptoms in home environments, but were frequently higher than estimates for enhanced sensitization risk (13% DM, 43% Fel d 1, and 27% Can f 1). Upholstered furnishings had the highest dust and allergen loads, followed by carpets and smooth floors. Allergen concentrations on different surface types that were sampled in the same room at the same time were significantly correlated and analyzed in separate models. The highest DM concentrations were present in bedrooms and in autumn. Further, DM loads on floors decreased significantly in rooms that were renovated within the last 5 years. If there were no records that furnishings were vacuumed, there were then significantly higher Can f 1 loads. Sweeping floors elevated DM and cat allergen concentrations. In addition to mite allergens, cat and dog allergens were detected in nearly all samples from day care centers. Overall, the present results indicate that allergen concentrations may be reduced by renovation and appropriate cleaning procedures.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Alérgenos/análise , Gatos , Cães , Poeira/análise , Exposição Ambiental , Ácaros , Poluição do Ar em Ambientes Fechados/análise , Animais , Criança , Creches , Pré-Escolar , Pisos e Cobertura de Pisos , Alemanha , Humanos , Lactente , Decoração de Interiores e Mobiliário , Estações do Ano
2.
Ann Occup Hyg ; 58(6): 693-706, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24759376

RESUMO

BACKGROUND: Bioaerosols (organic dusts) containing viable and non-viable microorganisms and their metabolic products can lead to adverse health effects in exposed workers. Standard quantification methods of airborne microorganisms are mainly based on cultivation, which often underestimates the microbial burden. The aim of the study was to determine the microbial load in German composting plants with different, mainly cultivation-independent, methods. Second purpose was to evaluate which working areas are associated with higher or lower bioaerosol concentrations. METHODS: A total of 124 inhalable dust samples were collected at different workplaces in 31 composting plants. Besides the determination of inhalable dust, particles, and total cell numbers, antigen quantification for moulds (Aspergillus fumigatus, Aspergillus versicolor, Penicillium chrysogenum, and Cladosporium spp.) and mites was performed. Concentrations of ß-glucans as well as endotoxin and pyrogenic activities were also measured. The number of colony forming units (cfu) was determined by cultivation of moulds and actinomycetes in 36 additional dust samples. RESULTS: With the exception of particle numbers, concentrations of all determined parameters showed significant correlations (P < 0.0001; r Spearman: 0.40-0.80), indicating a close association between these exposure markers. Colony numbers of mesophilic moulds and actinomycetes correlated also significantly with data of cultivation-independent methods. Exposure levels showed generally large variations. However, all parameters were measured highest in dusty working areas like next to the shredder and during processing with the exception of Cladosporium antigens that were found in the highest concentrations in the delivery area. The lowest concentrations of dust, particles, antigens, and pyrogenic activity were determined in wheel loader cabins (WLCs), which were equipped with an air filtration system. CONCLUSION: It was possible to assess the microbial load of air in composting plants with different quantification methods. Since allergic and toxic reactions may be also caused by nonliving microorganisms, cultivation-independent methods may provide additional information about bioaerosol composition. In general, air filtration reduced the bioaerosol exposure shown in WLCs. Due to the fact that the mechanical processing of compost material, e.g. by shredding or sieving is associated with the generation of high bioaerosol concentrations, there is still a need of improved risk assessment and state-of-the-art protective measures in composting plants.


Assuntos
Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Engenharia Sanitária , Solo , Aerossóis/análise , Poluição do Ar/análise , Biodegradação Ambiental , Monitoramento Ambiental/métodos , Humanos , Exposição Ocupacional/análise , Tamanho da Partícula , Medição de Risco , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA