Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535305

RESUMO

The neuropathological sequelae of stroke and subsequent recovery are incompletely understood. Here, we investigated the metabolic dynamics following stroke to advance the understanding of the pathophysiological mechanisms orchestrating stroke recovery. Using a nuclear magnetic resonance (NMR)-driven metabolomic profiling approach for urine samples obtained from a clinical group, the objective of this research was to (1) identify novel biomarkers indicative of severity and recovery following stroke, and (2) uncover the biochemical pathways underlying repair and functional recovery after stroke. Urine samples and clinical stroke assessments were collected during the acute (2-11 days) and chronic phases (6 months) of stroke. Using a 700 MHz 1H NMR spectrometer, metabolomic profiles were acquired followed by a combination of univariate and multivariate statistical analyses, along with biological pathway analysis and clinical correlations. The results revealed changes in phenylalanine, tyrosine, tryptophan, purine, and glycerophospholipid biosynthesis and metabolism during stroke recovery. Pseudouridine was associated with a change in post-stroke motor recovery. Thus, NMR-based metabolomics is able to provide novel insights into post-stroke cellular functions and establish a foundational framework for future investigations to develop targeted therapeutic interventions, advance stroke diagnosis and management, and enhance overall quality of life for individuals with stroke.

2.
Metabolites ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38392997

RESUMO

Metabolomic biomarkers hold promise in aiding the diagnosis and prognostication of traumatic brain injury. In Canada, over 165,000 individuals annually suffer from a traumatic brain injury (TBI), making it one of the most prevalent neurological conditions. In this pilot investigation, we examined blood-derived biomarkers as proxy measures that can provide an objective approach to TBI diagnosis and monitoring. Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolic profiling approach, this study determined whether (1) blood-derived metabolites change during recovery in male participants with mild to severe TBI; (2) biological pathway analysis reflects mechanisms that mediate neural damage/repair throughout TBI recovery; and (3) changes in metabolites correlate to initial injury severity. Eight male participants with mild to severe TBI (with intracranial lesions) provided morning blood samples within 1-4 days and again 6 months post-TBI. Following NMR analysis, the samples were subjected to multivariate statistical and machine learning-based analyses. Statistical modelling displayed metabolic changes during recovery through group separation, and eight significant metabolic pathways were affected by TBI. Metabolic changes were correlated to injury severity. L-alanine (R= -0.63, p < 0.01) displayed a negative relationship with the Glasgow Coma Scale. This study provides pilot data to support the feasibility of using blood-derived metabolites to better understand changes in biochemistry following TBI.

3.
Metabolites ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233646

RESUMO

The assessment, management, and prognostication of spinal cord injury (SCI) mainly rely upon observer-based ordinal scales measures. 1H nuclear magnetic resonance (NMR) spectroscopy provides an effective approach for the discovery of objective biomarkers from biofluids. These biomarkers have the potential to aid in understanding recovery following SCI. This proof-of-principle study determined: (a) If temporal changes in blood metabolites reflect the extent of recovery following SCI; (b) whether changes in blood-derived metabolites serve as prognostic indicators of patient outcomes based on the spinal cord independence measure (SCIM); and (c) whether metabolic pathways involved in recovery processes may provide insights into mechanisms that mediate neural damage and repair. Morning blood samples were collected from male complete and incomplete SCI patients (n = 7) following injury and at 6 months post-injury. Multivariate analyses were used to identify changes in serum metabolic profiles and were correlated to clinical outcomes. Specifically, acetyl phosphate, 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid significantly related to SCIM scores. These preliminary findings suggest that specific metabolites may serve as proxy measures of the SCI phenotype and prognostic markers of recovery. Thus, serum metabolite analysis combined with machine learning holds promise in understanding the physiology of SCI and aiding in prognosticating outcomes following injury.

4.
IBRO Neurosci Rep ; 11: 200-206, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786572

RESUMO

BACKGROUND: Analysis of fluid metabolites has the potential to provide insight into the neuropathophysiology of injury in patients with traumatic brain injury (TBI). OBJECTIVE: Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolic profiling approach, this study determined (1) if urinary metabolites change during recovery in patients with mild to severe TBI; (2) whether changes in urinary metabolites correlate to injury severity; (3) whether biological pathway analysis reflects mechanisms that mediate neural damage/repair throughout TBI recovery. METHODS: Urine samples were collected within 7 days and at 6-months post-injury in male participants (n = 8) with mild-severe TBI. Samples were analyzed with NMR-based quantitative spectroscopy for metabolomic profiles and analyzed with multivariate statistical and machine learning-based analyses. RESULTS: Lower levels of homovanillate (R = -0.74, p ≤ 0.001), L-methionine (R = -0.78, p < 0.001), and thymine (R = -0.85, p < 0.001) negatively correlated to injury severity. Pathway analysis revealed purine metabolism to be a primary pathway (p < 0.01) impacted by TBI. CONCLUSION: This study provides pilot data to support the use of urinary metabolites in clinical practice to better interpret biochemical changes underlying TBI severity and recovery. The discovery of urinary metabolites as biomarkers may assist in objective and rapid identification of TBI severity and prognosis. Thus, 1H NMR metabolomics has the potential to facilitate the adaptation of treatment programs that are personalized to the patient's needs.

5.
IBRO Neurosci Rep ; 10: 178-185, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33842921

RESUMO

Current assessments of recovery following spinal cord injury (SCI) focus on clinical outcome measures. These assessments bear an inherent risk of bias, emphasizing the need for more reliable prognostic biomarkers to measure SCI severity. This study evaluated fluid biomarkers as an objective tool to aid with prognosticating outcomes following SCI. Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolomics approach of urine samples, the objectives were to determine (a) if alterations in metabolic profiles reflect the extent of recovery of individual SCI patients, (b) whether changes in urine metabolites correlate to patient outcomes, and (c) whether biological pathway analysis reflects mechanisms of neural damage and repair. An inception cohort exploratory pilot study collected morning urine samples from male SCI patients (n=6) following injury and again at 6-months post-injury. A 700 MHz Bruker Avance III HD NMR spectrometer was used to acquire the metabolic signatures of urine samples, which were used to derive metabolic pathways. Multivariate statistical analyses were used to identify changes in metabolic signatures, which were correlated to clinical outcomes in the Spinal Cord Independence Measure (SCIM). Among SCI-induced metabolic changes, biomarkers which significantly correlated to patient SCIM scores included caffeine (R = -0.76, p < 0.01), 3-hydroxymandelic acid (R= -0.85, p < 0.001), L-valine (R = 0.90, p < 0.001; R = -0.64, p < 0.05), and N-methylhydantoin (R = -0.90, p < 0.001). The most affected pathway was purine metabolism. These findings indicate that urinary metabolites reflect SCI lesion severity and recovery and provide potentially prognostic biomarkers of SCI outcome in precision medicine approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA