RESUMO
BACKGROUND/OBJECTIVES: To investigate the relative contribution of systemic risk factors to retinopathy in prediabetes using a nationally representative cohort in the US. SUBJECTS/METHODS: A group of 2098 participants aged ≥40 years with available HbA1c and gradable retinal images from the National Health and Nutrition Examination Survey 2005-2008 were included in this retrospective cross-sectional analysis. Participants were stratified into control, prediabetes, and diabetes groups based on HbA1c and anti-hyperglycaemic medication use. Logistic regression was used to assess the contribution of potential systemic risk factors to retinopathy prevalence. RESULTS: The prevalence of retinopathy in the prediabetes group was 7.69%. Multivariable logistic regression revealed an inverse association of female sex (OR, 0.25; 95% CI, 0.08-0.74; p = 0.02), eGFR (OR, 0.98; 95% CI, 0.96-1.00; p = 0.04), and fasting glucose levels (OR, 0.92; 95% CI 0.87-0.98; p = 0.02) with retinopathy in individuals with prediabetes and a positive association with a Race/Ethnicity classification of "Other" (OR, 6.05; 95% CI, 1.65-22.1; p = 0.01). Comparison of ORs between groups indicated differential associations of "Other" race, fasting glucose, and C-reactive protein (CRP) with retinopathy in prediabetes compared with diabetes. CONCLUSIONS: The prevalence of retinopathy among individuals with prediabetes in the NHANES database is similar to other studies. Our findings suggest that nonglycemic metabolic risk factors may be especially relevant to the risk of retinopathy in prediabetes and extend the previously suggested protective effect of female sex on retinopathy in diabetes to prediabetes. The increased odds of retinopathy in underrepresented racial/ethnic groups in the setting of prediabetes also have implications for risk assessment in this population.
RESUMO
PURPOSE: Phosphatase and tensin homolog (PTEN) loss-of-function/PI3K pathway hyperactivation is associated with poor therapeutic outcomes and immune checkpoint inhibitor resistance across multiple malignancies. Our prior studies in Pb-Cre;PTENfl/flTrp53fl/fl genetically engineered mice (GEM) with aggressive-variant prostate cancer (AVPC) demonstrated tumor growth control in 60% mice following androgen deprivation therapy/PI3K inhibitor (PI3Ki)/programmed cell death protein 1 (PD-1) antibody combination, via abrogating lactate cross-talk between cancer cells and tumor-associated macrophages (TAM), and suppression of histone lactylation (H3K18lac)/phagocytic activation within TAM. Here, we targeted immunometabolic mechanism(s) of PI3Ki resistance, with the goal of durable tumor control in AVPC. EXPERIMENTAL DESIGN: Pb-Cre;PTENfl/flTrp53fl/fl GEM were treated with PI3Ki (copanlisib), MEK inhibitor (trametinib) or Porcupine inhibitor (LGK'974) singly or their combinations. MRI was used to monitor tumor kinetics and immune/proteomic profiling/ex vivo coculture mechanistic studies were performed on GEM tumors or corresponding tumor-derived cell lines. RESULTS: Given our proteomic profiling showing persistent MEK signaling within tumors of PI3Ki-resistant GEM, we tested whether addition of trametinib to copanlisib enhances tumor control in GEM, and we observed 80% overall response rate via additive suppression of lactate within TME and H3K18lac within TAM, relative to copanlisib (37.5%) monotherapy. The 20% resistant mice demonstrated feedback Wnt/ß-catenin activation, resulting in restoration of lactate secretion by tumor cells and H3K18lac within TAM. Cotargeting Wnt/ß-catenin signaling with LGK'974 in combination with PI3Ki/MEKi, demonstrated durable tumor control in 100% mice via H3K18lac suppression and complete TAM activation. CONCLUSIONS: Abrogation of lactate-mediated cross-talk between cancer cells and TAM results in durable ADT-independent tumor control in PTEN/p53-deficient AVPC, and warrants further investigation in clinical trials.
Assuntos
Neoplasias da Próstata , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Antagonistas de Androgênios , beta Catenina/metabolismo , Linhagem Celular Tumoral , Lactatos , Chumbo/metabolismo , Macrófagos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fagocitose , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Proteômica , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Purpose: PTEN loss-of-function/PI3K pathway hyperactivation occurs in â¼50% of metastatic, castrate-resistant prostate cancer patients, resulting in poor therapeutic outcomes and resistance to immune checkpoint inhibitors across multiple malignancies. Our prior studies in prostate-specific PTEN/p53-deleted genetically engineered mice (Pb-Cre;PTEN fl/fl Trp53 fl/fl GEM) with aggressive-variant prostate cancer (AVPC) demonstrated feedback Wnt/ß-catenin signaling activation in 40% mice resistant to androgen deprivation therapy (ADT)/PI3K inhibitor (PI3Ki)/PD-1 antibody (aPD-1) combination, resulting in restoration of lactate cross-talk between tumor-cells and tumor-associated macrophages (TAM), histone lactylation (H3K18lac) and phagocytic suppression within TAM. Here, we targeted immunometabolic mechanism(s) of resistance to ADT/PI3Ki/aPD-1 combination, with the goal of durable tumor control in PTEN/p53-deficient PC. Experimental design: Pb-Cre;PTEN fl/fl Trp53 fl/fl GEM were treated with either ADT (degarelix), PI3Ki (copanlisib), aPD-1, MEK inhibitor (trametinib) or Porcupine inhibitor (LGK 974) as single agents or their combinations. MRI was used to monitor tumor kinetics and immune/proteomic profiling/ ex vivo co-culture mechanistic studies were performed on prostate tumors or established GEM-derived cell lines. Results: We tested whether Wnt/ß-catenin pathway inhibition with LGK 974 addition to degarelix/copanlisib/aPD-1 therapy enhances tumor control in GEM, and observed de novo resistance due to feedback activation of MEK signaling. Based on our observation that degarelix/aPD-1 treatment resulted in partial inhibition of MEK signaling, we substituted trametinib for degarelix/aPD-1 treatment, and observed a durable tumor growth control of PI3Ki/MEKi/PORCNi in 100% mice via H3K18lac suppression and complete TAM activation within TME. Conclusions: Abrogation of lactate-mediated cross-talk between cancer cells and TAM results in durable ADT-independent tumor control in PTEN/p53-deficient AVPC, and warrants further investigation in clinical trials. STATEMENT OF TRANSLATIONAL RELEVANCE: PTEN loss-of-function occurs in â¼50% of mCRPC patients, and associated with poor prognosis, and immune checkpoint inhibitor resistance across multiple malignancies. Our prior studies have demonstrated that ADT/PI3Ki/PD-1 triplet combination therapy controls PTEN/p53-deficient PC in 60% of mice via enhancement of TAM phagocytosis. Here, we discovered that resistance to ADT/PI3K/PD-1 therapy occurred via restoration of lactate production via feedback Wnt/MEK signaling following treatment with PI3Ki, resulting in inhibition of TAM phagocytosis. Critically, co-targeting of PI3K/MEK/Wnt signaling pathways using an intermittent dosing schedule of corresponding targeted agents resulted in complete tumor control and significantly prolonged survival without significant long-term toxicity. Collectively, our findings provide "proof-of-concept" that targeting lactate as a macrophage phagocytic checkpoint controls growth of murine PTEN/p53-deficient PC and warrant further investigation in AVPC clinical trials.
RESUMO
PURPOSE: Phosphatase and tensin homolog (PTEN) loss of function occurs in approximately 50% of patients with metastatic castrate-resistant prostate cancer (mCRPC), and is associated with poor prognosis and responsiveness to standard-of-care therapies and immune checkpoint inhibitors. While PTEN loss of function hyperactivates PI3K signaling, combinatorial PI3K/AKT pathway and androgen deprivation therapy (ADT) has demonstrated limited anticancer efficacy in clinical trials. Here, we aimed to elucidate mechanism(s) of resistance to ADT/PI3K-AKT axis blockade, and to develop rational combinatorial strategies to effectively treat this molecular subset of mCRPC. EXPERIMENTAL DESIGN: Prostate-specific PTEN/p53-deficient genetically engineered mice (GEM) with established 150-200 mm3 tumors, as assessed by ultrasound, were treated with either ADT (degarelix), PI3K inhibitor (copanlisib), or anti-PD-1 antibody (aPD-1), as single agents or their combinations, and tumors were monitored by MRI and harvested for immune, transcriptomic, and proteomic profiling, or ex vivo co-culture studies. Single-cell RNA sequencing on human mCRPC samples was performed using 10X Genomics platform. RESULTS: Coclinical trials in PTEN/p53-deficient GEM revealed that recruitment of PD-1-expressing tumor-associated macrophages (TAM) thwarts ADT/PI3Ki combination-induced tumor control. The addition of aPD-1 to ADT/PI3Ki combination led to TAM-dependent approximately 3-fold increase in anticancer responses. Mechanistically, decreased lactate production from PI3Ki-treated tumor cells suppressed histone lactylation within TAM, resulting in their anticancer phagocytic activation, which was augmented by ADT/aPD-1 treatment and abrogated by feedback activation of Wnt/ß-catenin pathway. Single-cell RNA-sequencing analysis in mCRPC patient biopsy samples revealed a direct correlation between high glycolytic activity and TAM phagocytosis suppression. CONCLUSIONS: Immunometabolic strategies that reverse lactate and PD-1-mediated TAM immunosuppression, in combination with ADT, warrant further investigation in patients with PTEN-deficient mCRPC.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Camundongos , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-akt , Antagonistas de Androgênios/uso terapêutico , Ácido Láctico , Fosfatidilinositol 3-Quinases , Proteômica , Via de Sinalização Wnt , Terapia de Imunossupressão , Macrófagos/patologia , PTEN Fosfo-Hidrolase/genéticaRESUMO
A major barrier to the successful application of nanotechnology for cancer treatment is the suboptimal delivery of therapeutic payloads to metastatic tumor deposits. We previously discovered that cabozantinib, a tyrosine kinase inhibitor, triggers neutrophil-mediated anticancer innate immunity, resulting in tumor regression in an aggressive PTEN/p53-deficient genetically engineered murine model of advanced prostate cancer. Here, we specifically investigated the potential of cabozantinib-induced neutrophil activation and recruitment to enhance delivery of BSA-coated polymeric nanoparticles (BSA-NPs) into murine PTEN/p53-deficient prostate tumors. On the basis of the observation that BSA coating of NPs enhanced association and internalization by activated neutrophils by approximately 6-fold in vitro, relative to uncoated NPs, we systemically injected BSA-coated, dye-loaded NPs into prostate-specific PTEN/p53-deficient mice that were pretreated with cabozantinib. Flow cytometric analysis revealed an approximately 4-fold increase of neutrophil-associated BSA-NPs and an approximately 32-fold increase in mean fluorescent dye uptake following 3 days of cabozantinib/BSA-NP administration, relative to BSA-NP alone. Strikingly, neutrophil depletion with Ly6G antibody abolished dye-loaded BSA-NP accumulation within tumors to baseline levels, demonstrating targeted neutrophil-mediated intratumoral NP delivery. Furthermore, we observed an approximately 13-fold decrease in accumulation of BSA-NPs in the liver, relative to uncoated NPs, post-cabozantinib treatment, suggesting that BSA coating of NPs can significantly enhance cabozantinib-induced, neutrophil-mediated targeted intratumoral drug delivery, while mitigating off-target toxicity. Collectively, we demonstrate a novel targeted nano-immunotherapeutic strategy for enhanced intratumoral delivery of BSA-NPs, with translational potential to significantly augment therapeutic indices of cancer medicines, thereby overcoming current pharmacologic barriers commonly encountered in preclinical/early-phase drug development.