Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5016, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876998

RESUMO

Periodontitis affects billions of people worldwide. To address relationships of periodontal niche cell types and microbes in periodontitis, we generated an integrated single-cell RNA sequencing (scRNAseq) atlas of human periodontium (34-sample, 105918-cell), including sulcular and junctional keratinocytes (SK/JKs). SK/JKs displayed altered differentiation states and were enriched for effector cytokines in periodontitis. Single-cell metagenomics revealed 37 bacterial species with cell-specific tropism. Fluorescence in situ hybridization detected intracellular 16 S and mRNA signals of multiple species and correlated with SK/JK proinflammatory phenotypes in situ. Cell-cell communication analysis predicted keratinocyte-specific innate and adaptive immune interactions. Highly multiplexed immunofluorescence (33-antibody) revealed peri-epithelial immune foci, with innate cells often spatially constrained around JKs. Spatial phenotyping revealed immunosuppressed JK-microniches and SK-localized tertiary lymphoid structures in periodontitis. Here, we demonstrate impacts on and predicted interactomics of SK and JK cells in health and periodontitis, which requires further investigation to support precision periodontal interventions in states of chronic inflammation.


Assuntos
Comunicação Celular , Queratinócitos , Periodontite , Análise de Célula Única , Humanos , Queratinócitos/metabolismo , Queratinócitos/imunologia , Periodontite/microbiologia , Periodontite/metabolismo , Periodontite/imunologia , Periodontite/patologia , Citocinas/metabolismo , Periodonto/microbiologia , Periodonto/metabolismo , Periodonto/patologia , Imunidade Inata , Hibridização in Situ Fluorescente , Masculino , Metagenômica/métodos , Bactérias/metabolismo , Bactérias/genética , Feminino , Adulto , Imunidade Adaptativa
2.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895230

RESUMO

Identifying cell types and states remains a time-consuming and error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data, using unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integration of TACIT-identified cell with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

3.
J Pers Med ; 12(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36294820

RESUMO

Predicting tooth loss is a persistent clinical challenge in the 21st century. While an emerging field in dentistry, computational solutions that employ machine learning are promising for enhancing clinical outcomes, including the chairside prognostication of tooth loss. We aimed to evaluate the risk of bias in prognostic prediction models of tooth loss that use machine learning. To do this, literature was searched in two electronic databases (MEDLINE via PubMed; Google Scholar) for studies that reported the accuracy or area under the curve (AUC) of prediction models. AUC measures the entire two-dimensional area underneath the entire receiver operating characteristic (ROC) curves. AUC provides an aggregate measure of performance across all possible classification thresholds. Although both development and validation were included in this review, studies that did not assess the accuracy or validation of boosting models (AdaBoosting, Gradient-boosting decision tree, XGBoost, LightGBM, CatBoost) were excluded. Five studies met criteria for inclusion and revealed high accuracy; however, models displayed a high risk of bias. Importantly, patient-level assessments combined with socioeconomic predictors performed better than clinical predictors alone. While there are current limitations, machine-learning-assisted models for tooth loss may enhance prognostication accuracy in combination with clinical and patient metadata in the future.

4.
J Pediatr Gastroenterol Nutr ; 74(1): 7-12, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560727

RESUMO

ABSTRACT: Inflammatory bowel diseases (IBD) represent a group of chronic inflammatory disorders of the gastrointestinal tract that lead to impaired quality of life and substantial health care costs. Up to 50% of pediatric IBD cases present with manifestations in the oral cavity. These may develop in nearly every oral tissue, including the soft tissues, tongue, lips, teeth, and lymph nodes. The goal of this review is to offer a systematic approach to diagnose and manage commonly encountered oral manifestations of pediatric IBD. This knowledge is critical for enhancing the comprehensive care and quality of life of children with these debilitating diseases.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Criança , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/terapia , Boca , Qualidade de Vida
5.
Diagnostics (Basel) ; 11(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067332

RESUMO

Periodontal diseases comprise a group of globally prevalent, chronic oral inflammatory conditions caused by microbial dysbiosis and the host immune response. These diseases specifically affect the tooth-supporting tissues (i.e., the periodontium) but are also known to contribute to systemic inflammation. If left untreated, periodontal diseases can ultimately progress to tooth loss, lead to compromised oral function, and negatively impact the overall quality of life. Therefore, it is important for the clinician to accurately diagnose these diseases both early and accurately chairside. Currently, the staging and grading of periodontal diseases are based on recording medical and dental histories, thorough oral examination, and multiple clinical and radiographic analyses of the periodontium. There have been numerous attempts to improve, automate, and digitize the collection of this information with varied success. Recent studies focused on the subgingival microbiome and the host immune response suggest there is an untapped potential for non-invasive oral sampling to assist clinicians in the chairside diagnosis and, potentially, prognosis. Here, we review the available toolkit available for diagnosing periodontal diseases, discuss commercially available options, and highlight the need for collaborative research initiatives and state-of-the-art technology development across disciplines to overcome the challenges of rapid periodontal disease diagnosis.

6.
Front Immunol ; 12: 620124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679761

RESUMO

In modern medicine, the oral cavity has often been viewed as a passive conduit to the upper airways and gastrointestinal tract; however, its connection to the rest of the body has been increasingly explored over the last 40 years. For several diseases, the periodontium and gingiva are at the center of this oral-systemic link. Over 50 systemic conditions have been specifically associated with gingival and periodontal inflammation, including inflammatory bowel diseases (IBD), which have recently been elevated from simple "associations" to elegant, mechanistic investigations. IBD and periodontitis have been reported to impact each other's progression via a bidirectional relationship whereby chronic oral or intestinal inflammation can impact the other; however, the precise mechanisms for how this occurs remain unclear. Classically, the etiology of gingival inflammation (gingivitis) is oral microbial dysbiosis in the subgingival crevice that can lead to destructive periodontal disease (periodontitis); however, the current understanding of gingival involvement in IBD is that it may represent a separate disease entity from classical gingivitis, arising from mechanisms related to systemic inflammatory activation of niche-resident immune cells. Synthesizing available evidence, we hypothesize that once established, IBD can be driven by microbiomial and inflammatory changes originating specifically from the gingival niche through saliva, thereby worsening IBD outcomes and thus perpetuating a vicious cycle. In this review, we introduce the concept of the "gum-gut axis" as a framework for examining this reciprocal relationship between the periodontium and the gastrointestinal tract. To support and explore this gum-gut axis, we 1) provide a narrative review of historical studies reporting gingival and periodontal manifestations in IBD, 2) describe the current understanding and advances for the gum-gut axis, and 3) underscore the importance of collaborative treatment and research plans between oral and GI practitioners to benefit this patient population.


Assuntos
Suscetibilidade a Doenças , Trato Gastrointestinal , Gengiva , Doenças Inflamatórias Intestinais/etiologia , Animais , Diagnóstico Diferencial , Disbiose , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Gengiva/microbiologia , Gengivite/diagnóstico , Gengivite/etiologia , Nível de Saúde , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Microbiota , Saúde Bucal , Periodontite/diagnóstico , Periodontite/etiologia , Fenótipo , Fatores de Risco
7.
medRxiv ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33140061

RESUMO

Despite signs of infection, the involvement of the oral cavity in COVID-19 is poorly understood. To address this, single-cell RNA sequencing data-sets were integrated from human minor salivary glands and gingiva to identify 11 epithelial, 7 mesenchymal, and 15 immune cell clusters. Analysis of SARS-CoV-2 viral entry factor expression showed enrichment in epithelia including the ducts and acini of the salivary glands and the suprabasal cells of the mucosae. COVID-19 autopsy tissues confirmed in vivo SARS-CoV-2 infection in the salivary glands and mucosa. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 expression and SARS-CoV-2 RNA. Matched nasopharyngeal and saliva samples found distinct viral shedding dynamics and viral burden in saliva correlated with COVID-19 symptoms including taste loss. Upon recovery, this cohort exhibited salivary antibodies against SARS-CoV-2 proteins. Collectively, the oral cavity represents a robust site for COVID-19 infection and implicates saliva in viral transmission.

8.
Front Immunol ; 11: 1487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903550

RESUMO

A common feature of many acute and chronic oral diseases is microbial-induced inflammation. Innate immune responses are the first line of defense against pathogenic microorganisms and are initiated by pattern recognition receptors (PRRs) that specifically recognize pathogen-associated molecular patterns and danger-associated molecular patterns. The activation of certain PRRs can lead to the assembly of macromolecular oligomers termed inflammasomes, which are responsible for pro-inflammatory cytokine maturation and secretion and thus activate host inflammatory responses. About 10 years ago, the absent in melanoma 2 (AIM2) was independently discovered by four research groups, and among the "canonical" inflammasomes [including AIM2, NLR family pyrin domain (NLRP)1, NLRP3, NLR family apoptosis inhibitory protein (NAIP)/NLR family, caspase activation and recruitment domain (CARD) containing (NLRC)4, and pyrin], AIM2 so far is the only one that simultaneously acts as a cytosolic DNA sensor due to its DNA-binding ability. Undoubtedly, such a double-faceted role gives AIM2 greater mission and more potential in the mediation of innate immune responses. Therefore, AIM2 has garnered much attention from the broad scientific community during its first 10 years of discovery (2009-2019). How the AIM2 inflammasome is related to oral diseases has aroused debate over the past few years and is under active investigation. AIM2 inflammasome may potentially be a key link between oral diseases and innate immunity. In this review, we highlight the current knowledge of the AIM2 inflammasome and its critical role in the pathogenesis of various oral diseases, which might offer future possibilities for disease prevention and targeted therapy utilizing this continued understanding.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Neoplasias Bucais/imunologia , Doenças Periodontais/imunologia , Pulpite/imunologia , Animais , Humanos , Imunidade Inata , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo
9.
Development ; 147(21)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32554531

RESUMO

Cleft palate (CP), one of the most common congenital conditions, arises from failures in secondary palatogenesis during embryonic development. Several human genetic syndromes featuring CP and ectodermal dysplasia have been linked to mutations in genes regulating cell-cell adhesion, yet mouse models have largely failed to recapitulate these findings. Here, we use in utero lentiviral-mediated genetic approaches in mice to provide the first direct evidence that the nectin-afadin axis is essential for proper palate shelf elevation and fusion. Using this technique, we demonstrate that palatal epithelial conditional loss of afadin (Afdn) - an obligate nectin- and actin-binding protein - induces a high penetrance of CP, not observed when Afdn is targeted later using Krt14-Cre We implicate Nectin1 and Nectin4 as being crucially involved, as loss of either induces a low penetrance of mild palate closure defects, while loss of both causes severe CP with a frequency similar to Afdn loss. Finally, expression of the human disease mutant NECTIN1W185X causes CP with greater penetrance than Nectin1 loss, suggesting this alteration may drive CP via a dominant interfering mechanism.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Nectinas/genética , Animais , Células Epiteliais/metabolismo , Humanos , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organogênese , Palato/embriologia , Penetrância , Síndrome
10.
Elife ; 82019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31833472

RESUMO

During organogenesis, precise control of spindle orientation balances proliferation and differentiation. In the developing murine epidermis, planar and perpendicular divisions yield symmetric and asymmetric fate outcomes, respectively. Classically, division axis specification involves centrosome migration and spindle rotation, events occurring early in mitosis. Here, we identify a novel orientation mechanism which corrects erroneous anaphase orientations during telophase. The directionality of reorientation correlates with the maintenance or loss of basal contact by the apical daughter. While the scaffolding protein LGN is known to determine initial spindle positioning, we show that LGN also functions during telophase to reorient oblique divisions toward perpendicular. The fidelity of telophase correction also relies on the tension-sensitive adherens junction proteins vinculin, α-E-catenin, and afadin. Failure of this corrective mechanism impacts tissue architecture, as persistent oblique divisions induce precocious, sustained differentiation. The division orientation plasticity provided by telophase correction may enable progenitors to adapt to local tissue needs.


Assuntos
Células Epidérmicas/citologia , Células Epiteliais/citologia , Telófase/fisiologia , Actomiosina/fisiologia , Anáfase , Animais , Autorrenovação Celular , Forma Celular , Citoesqueleto/ultraestrutura , Epiderme/embriologia , Feminino , Genes Reporter , Microscopia Intravital , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Conformação Proteica , Interferência de RNA , Fuso Acromático/ultraestrutura , Vinculina/genética , Vinculina/fisiologia , alfa Catenina/genética , alfa Catenina/fisiologia
11.
Cell Stem Cell ; 25(6): 814-829.e6, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31809739

RESUMO

Stem cells in stratified epithelia are generally believed to adhere to a non-hierarchical single-progenitor model. Using lineage tracing and genetic label-retention assays, we show that the hard palatal epithelium of the oral cavity is unique in displaying marked proliferative heterogeneity. We identify a previously uncharacterized, infrequently-dividing stem cell population that resides within a candidate niche, the junctional zone (JZ). JZ stem cells tend to self-renew by planar symmetric divisions, respond to masticatory stresses, and promote wound healing, whereas frequently-dividing cells reside outside the JZ, preferentially renew through perpendicular asymmetric divisions, and are less responsive to injury. LRIG1 is enriched in the infrequently-dividing population in homeostasis, dynamically changes expression in response to tissue stresses, and promotes quiescence, whereas Igfbp5 preferentially labels a rapidly-growing, differentiation-prone population. These studies establish the oral mucosa as an important model system to study epithelial stem cell populations and how they respond to tissue stresses.


Assuntos
Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Fluorescência , Imuno-Histoquímica , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cicatrização/fisiologia
12.
Cell Rep ; 29(6): 1660-1674.e7, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693903

RESUMO

The incidence of human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) is increasing and implicated in more than 60% of all oropharyngeal carcinomas (OPSCCs). Although whole-genome, transcriptome, and proteome analyses have identified altered signaling pathways in HPV-induced HNSCCs, additional tools are needed to investigate the unique pathobiology of OPSCC. Herein, bioinformatics analyses of human HPV(+) HNSCCs revealed that all tumors express full-length E6 and identified molecular subtypes based on relative E6 and E7 expression levels. To recapitulate the levels, stoichiometric ratios, and anatomic location of E6/E7 expression, we generated a genetically engineered mouse model whereby balanced expression of E6/E7 is directed to the oropharyngeal epithelium. The addition of a mutant PIK3CAE545K allele leads to the rapid development of pre-malignant lesions marked by immune cell accumulation, and a subset of these lesions progress to OPSCC. This mouse provides a faithful immunocompetent model for testing treatments and investigating mechanisms of immunosuppression.


Assuntos
Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/virologia , Proteínas Oncogênicas Virais/metabolismo , Neoplasias Orofaríngeas/virologia , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Imunocompetência , Sítios Internos de Entrada Ribossomal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/imunologia , Neoplasias Orofaríngeas/metabolismo , Proteínas E7 de Papillomavirus/genética , Splicing de RNA/genética , RNA-Seq , Proteínas Repressoras/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
13.
Cancer Res ; 78(14): 3954-3968, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29784854

RESUMO

High-grade urothelial cancer contains intrinsic molecular subtypes that exhibit differences in underlying tumor biology and can be divided into luminal-like and basal-like subtypes. We describe here the first subtype-specific murine models of bladder cancer and show that Upk3a-CreERT2; Trp53L/L; PtenL/L; Rosa26LSL-Luc (UPPL, luminal-like) and BBN (basal-like) tumors are more faithful to human bladder cancer than the widely used MB49 cells. Following engraftment into immunocompetent C57BL/6 mice, BBN tumors were more responsive to PD-1 inhibition than UPPL tumors. Responding tumors within the BBN model showed differences in immune microenvironment composition, including increased ratios of CD8+:CD4+ and memory:regulatory T cells. Finally, we predicted and confirmed immunogenicity of tumor neoantigens in each model. These UPPL and BBN models will be a valuable resource for future studies examining bladder cancer biology and immunotherapy.Significance: This work establishes human-relevant mouse models of bladder cancer. Cancer Res; 78(14); 3954-68. ©2018 AACR.


Assuntos
Antígenos de Neoplasias/imunologia , Carcinoma/imunologia , Imunocompetência/imunologia , Neoplasias Urológicas/imunologia , Urotélio/imunologia , Animais , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/imunologia
14.
Development ; 143(15): 2803-17, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317810

RESUMO

Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation.


Assuntos
Proteínas de Transporte/metabolismo , Epitélio/metabolismo , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Varredura , Morfogênese/genética , Morfogênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Papilas Gustativas/embriologia , Papilas Gustativas/metabolismo , Língua/embriologia , Língua/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA