RESUMO
Probiotics are typically enumerated by agar plate counting (PC) techniques. PC has several limitations including poor specificity, high variability, inability to enumerate dead cells, viable but non-culturable cells and cells in complex matrices. Viability droplet digital polymerase chain reaction (v-ddPCR) is an emerging enumeration technique with improved specificity, precision, and the ability to enumerate cells in varying states of culturability or in complex matrices. Good correlation and agreement between v-ddPCR and PC is well documented, but not much research has been published on the comparison when enumerating freeze-dried (FD) probiotics during storage. In this study, v-ddPCR utilizing PE51 (PE51-ddPCR), a combination of propidium monoazide (PMA) and ethidium monoazide (EMA), was evaluated as alternative enumeration technique to PC on blends of four FD probiotic strains over the course of a 3-month storage study with accelerated conditions. When PMA and EMA are combined (PE51), this study demonstrates agreement (bias = 7.63e+9, LOA = 4.38e+10 to 5.9e+10) and association (r = 0.762) between PC and v-ddPCR, at or above levels of an accepted alternative method. Additionally, v-ddPCR with individual dyes PMA and EMA provide insight into how they individually contribute to the viable counts obtained by PE51-ddPCR and provide a more specific physiological understanding of how probiotics cope with or experience damage during storage.
RESUMO
The enumeration of viable bacteria is an essential metric in the dietary supplement and food industry to ensure quality of probiotic products. However, selective enumeration of lactobacilli in probiotic freeze-dried blends containing bifidobacteria is difficult to achieve with current Lactobacillus-specific agars (i.e., Rogosa and LAMVAB). Using a panel of Bifidobacterium and Lactobacillus commercial probiotic species, we found that Rogosa agar failed to inhibit all bifidobacteria while LAMVAB agar suppressed several lactobacilli. This prompted us to develop an alternative method of selection, hereby referred to as Lactobacillus Micro-Aerobic (LMA) method, which promotes growth under controlled microaerobic conditions (6-12% O2, 5-8% CO2) to leverage the different oxygen sensitivities of lactobacilli and bifidobacteria. Validation using pure cultures and multi-strain blends of 4 Bifidobacterium and 10 Lactobacillus species showed that LMA effectively suppressed all bifidobacteria and accurately enumerated all lactobacilli when compared to control methods. These results demonstrate the superior efficacy of modulating the redox environment to select for Lactobacillus within a Bifidobacterium-rich background, as opposed to applying acid and antibiotic pressures.
Assuntos
Bifidobacterium , Probióticos , Ágar , Meios de Cultura , LactobacillusRESUMO
BACKGROUND: Of the many neurotransmitters in humans, gamma-aminobutyric acid (GABA) shows potential for improving several mental health indications such as stress and anxiety. The microbiota-gut-brain axis is an important pathway for GABAergic effects, as microbially-secreted GABA within the gut can affect host mental health outcomes. Understanding the molecular characteristics of GABA production by microbes within the gut can offer insight to novel therapies for mental health. RESULTS: Three strains of Levilactobacillus brevis with syntenous glutamate decarboxylase (GAD) operons were evaluated for overall growth, glutamate utilization, and GABA production in typical synthetic growth media supplemented with monosodium glutamate (MSG). Levilactobacillus brevis Lbr-6108™ (Lbr-6108), formerly known as L. brevis DPC 6108, and Levilactobacillus brevis Lbr-35 ™ (Lbr-35) had similar growth profiles but differed significantly in GABA secretion and acid resistance. Lbr-6108 produced GABA early within the growth phase and produced significantly more GABA than Lbr-35 and the type strain Levilactobacillus brevis ATCC 14869 after the stationary phase. The global gene expression during GABA production at several timepoints was determined by RNA sequencing. The GAD operon, responsible for GABA production and secretion, activated in Lbr-6108 after only 6 h of fermentation and continued throughout the stationary phase. Furthermore, Lbr-6108 activated many different acid resistance mechanisms concurrently, which contribute to acid tolerance and energy production. In contrast, Lbr-35, which has a genetically similar GAD operon, including two copies of the GAD gene, showed no upregulation of the GAD operon, even when cultured with MSG. CONCLUSIONS: This study is the first to evaluate whole transcriptome changes in Levilactobacillus brevis during GABA production in different growth phases. The concurrent expression of multiple acid-resistance mechanisms reveals niche-specific metabolic functionality between common human commensals and highlights the complex regulation of GABA metabolism in this important microbial species. Furthermore, the increased and rapid GABA production of Lbr-6108 highlights the strain's potential as a therapeutic and the overall value of screening microbes for effector molecule output.