Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675055

RESUMO

Three-dimensional microextrusion bioprinting technology uses pneumatics, pistons, or screws to transfer and extrude bioinks containing biomaterials and cells to print biological tissues and organs. Computational fluid dynamics (CFD) analysis can simulate the flow characteristics of bioinks in a control volume, and the effect on cell viability can be predicted by calculating the physical quantities. In this study, we developed an analysis system to predict the effect of a screw-based dispenser system (SDS) on cell viability in bioinks through rheological and CFD analyses. Furthermore, carboxymethylcellulose/alginate-based bioinks were used for the empirical evaluation of high-viscous bioinks. The viscosity of bioinks was determined by rheological measurement, and the viscosity coefficient for the CFD analysis was derived from a correlation equation by non-linear regression analysis. The mass flow rate derived from the analysis was successfully validated by comparison with that from the empirical evaluation. Finally, the cell viability was confirmed after bioprinting with bioinks containing C2C12 cells, suggesting that the developed SDS may be suitable for application in the field of bioengineering. Consequently, the developed bioink analysis system is applicable to a wide range of systems and materials, contributing to time and cost savings in the bioengineering industry.

2.
Polymers (Basel) ; 15(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38231895

RESUMO

Three-dimensional bioprinting represents an innovative platform for fabricating intricate, three-dimensional (3D) tissue structures that closely resemble natural tissues. The development of hybrid bioinks is an actionable strategy for integrating desirable characteristics of components. In this study, cellulose recovered from plum seed was processed to synthesize carboxymethyl cellulose (CMC) for 3D bioprinting. The plum seeds were initially subjected to α-cellulose recovery, followed by the synthesis and characterization of plum seed-derived carboxymethyl cellulose (PCMC). Then, hybrid bioinks composed of PCMC and sodium alginate were fabricated, and their suitability for extrusion-based bioprinting was explored. The PCMC bioinks exhibit a remarkable shear-thinning property, enabling effortless extrusion through the nozzle and maintaining excellent initial shape fidelity. This bioink was then used to print muscle-mimetic 3D structures containing C2C12 cells. Subsequently, the cytotoxicity of PCMC was evaluated at different concentrations to determine the maximum acceptable concentration. As a result, cytotoxicity was not observed in hydrogels containing a suitable concentration of PCMC. Cell viability was also evaluated after printing PCMC-containing bioinks, and it was observed that the bioprinting process caused minimal damage to the cells. This suggests that PCMC/alginate hybrid bioink can be used as a very attractive material for bioprinting applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA