Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Neurobiol ; 31(2): 116-130, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35674000

RESUMO

Absence seizures are caused by abnormal synchronized oscillations in the thalamocortical (TC) circuit, which result in widespread spike-and-wave discharges (SWDs) on electroencephalography (EEG) as well as impairment of consciousness. Thalamic reticular nucleus (TRN) and TC neurons are known to interact dynamically to generate TC circuitry oscillations during SWDs. Clinical studies have suggested the association of Plcß1 with early-onset epilepsy, including absence seizures. However, the brain regions and circuit mechanisms related to the generation of absence seizures with Plcß1 deficiency are unknown. In this study, we found that loss of Plcß1 in mice caused spontaneous complex-type seizures, including convulsive and absence seizures. Importantly, TRN-specific deletion of Plcß1 led to the development of only spontaneous SWDs, and no other types of seizures were observed. Ex vivo slice patch recording demonstrated that the number of spikes, an intrinsic TRN neuronal property, was significantly reduced in both tonic and burst firing modes in the absence of Plcß1 . We conclude that the loss of Plcß1 in the TRN leads to decreased excitability and impairs normal inhibitory neuronal function, thereby disrupting feedforward inhibition of the TC circuitry, which is sufficient to cause hypersynchrony of the TC system and eventually leads to spontaneous absence seizures. Our study not only provides a novel mechanism for the induction of SWDs in Plcß1 -deficient patients but also offers guidance for the development of diagnostic and therapeutic tools for absence epilepsy.

2.
Biosens Bioelectron ; 195: 113665, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610533

RESUMO

Competition is one of the most fundamental, yet complex, conflicts between social animals, and previous studies have indicated that the medial prefrontal cortex (mPFC) region of a brain is involved in social interactions. However, because we do not have a lightweight, wireless recording system that is free of interference, it is still unclear how the neural activity of the mPFC region is involved in the diverse, interacting behaviors that comprise competition. Herein, we present an interference-free, lightweight, wireless neural probe system that we applied to two mice to measure mPFC neural activities during a food competition test. In the test, we categorized 18 behavioral repertoires expressed by the mice. From the analysis of the neural signals during each repetition of the test, we found that the mPFC neural activity had the most positive correlation with goal-driven competitive behaviors, such as guarding resources and behaviors related to the extortion of resources. Remarkably, we found that the neural activity associated with guarding behavior was higher than that of extorting behavior, and this highlighted the importance of resource-guarding behavior for winning the competition, i.e., 'winning a trophy is hard, but keeping it is harder'. Our approach in which a wireless system is used will enable in-depth studies of the brains of mice in their natural social interactions.


Assuntos
Técnicas Biossensoriais , Neurônios , Animais , Encéfalo , Camundongos , Córtex Pré-Frontal
3.
Nature ; 566(7744): 339-343, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760920

RESUMO

A psychotherapeutic regimen that uses alternating bilateral sensory stimulation (ABS) has been used to treat post-traumatic stress disorder. However, the neural basis that underlies the long-lasting effect of this treatment-described as eye movement desensitization and reprocessing-has not been identified. Here we describe a neuronal pathway driven by the superior colliculus (SC) that mediates persistent attenuation of fear. We successfully induced a lasting reduction in fear in mice by pairing visual ABS with conditioned stimuli during fear extinction. Among the types of visual stimulation tested, ABS provided the strongest fear-reducing effect and yielded sustained increases in the activities of the SC and mediodorsal thalamus (MD). Optogenetic manipulation revealed that the SC-MD circuit was necessary and sufficient to prevent the return of fear. ABS suppressed the activity of fear-encoding cells and stabilized inhibitory neurotransmission in the basolateral amygdala through a feedforward inhibitory circuit from the MD. Together, these results reveal the neural circuit that underlies an effective strategy for sustainably attenuating traumatic memories.


Assuntos
Ansiedade/psicologia , Ansiedade/terapia , Extinção Psicológica/fisiologia , Medo/fisiologia , Medo/psicologia , Vias Neurais/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Animais , Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Retroalimentação Fisiológica , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Inibição Neural , Optogenética , Estimulação Luminosa , Transtornos de Estresse Pós-Traumáticos , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 115(43): 11078-11083, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297409

RESUMO

In the descending analgesia pathway, opioids are known to disinhibit the projections from the periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM), leading to suppression of pain signals at the spinal cord level. The locus coeruleus (LC) has been proposed to engage in the descending pathway through noradrenergic inputs to the spinal cord. Nevertheless, how the LC is integrated in the descending analgesia circuit has remained unknown. Here, we show that the opioidergic analgesia pathway is bifurcated in structure and function at the PAG. A knockout as well as a PAG-specific knockdown of phospholipase C ß4 (PLCß4), a signaling molecule for G protein-coupled receptors, enhanced swim stress-induced and morphine-induced analgesia in mice. Immunostaining after simultaneous retrograde labeling from the RVM and the LC revealed two mutually exclusive neuronal populations at the PAG, each projecting either to the LC or the RVM, with PLCß4 expression only in the PAG-LC projecting cells that provide a direct synaptic input to LC-spinal cord (SC) projection neurons. The PAG-LC projection neurons in wild-type mice turned quiescent in response to opiates, but remained active in the PLCß4 mutant, suggesting a possibility that an increased adrenergic function induced by the persistent PAG-LC activity underlies the enhanced opioid analgesia in the mutant. Indeed, the enhanced analgesia in the mutant was reversed by blocking α2-noradrenergic receptors. These findings indicate that opioids suppress descending analgesia through the PAG-LC pathway, while enhancing it through the PAG-RVM pathway, i.e., two distinct pathways with opposing effects on opioid analgesia. These results point to a therapeutic target in pain control.


Assuntos
Analgesia/métodos , Mesencéfalo/fisiopatologia , Manejo da Dor/métodos , Analgésicos Opioides/farmacologia , Animais , Masculino , Mesencéfalo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Dor/fisiopatologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Yin-Yang
5.
Nat Commun ; 8(1): 1176, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29109508

RESUMO

Disorderly resolution of conflict is costly, whereas orderly resolution by consent rules enables quick settlement. However, it is unclear whether non-human animals can make and observe rules to resolve conflict without aggression. Here we report a new behavioral paradigm for mice: a modified two-armed maze that uses wireless electrical brain stimulation as reward. First, the mice were individually operant-trained to initiate and then receive the reward at the signaled arm. Next, two mice were coupled and had to cooperate to initiate reward but then to compete over reward allocation. Mice develop and observe a rule of reward zone allocation that increases the total amount of reward and reward equity between the pair. In the mutual rule-observance behavior, positive reciprocity and tolerance to the other's violation are also observed. These findings suggest that rodents can learn to make and observe rules to resolve conflict, enhancing long-term benefit and payoff equity.


Assuntos
Camundongos Endogâmicos C57BL/psicologia , Negociação , Recompensa , Comportamento Social , Controles Informais da Sociedade , Animais , Condicionamento Operante , Estimulação Encefálica Profunda , Masculino , Aprendizagem em Labirinto , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA