Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37681834

RESUMO

Among the various thermal stress indices, apparent temperature (AT) is closely related to public health indicators, and consequently is widely used by weather agencies around the world. Therefore, in this paper we estimate the changes in AT and contributing components in Korea as a whole and in five major cities (Seoul, Gwanju, Daegu, Daejeon, and Busan) using national standard climate scenarios based on the coupled model inter-comparison project (CMIP6). In the present day, high AT occurs in major cities due to high temperature (TAS) and relative humidity (RH). Our findings reveal that even when TAS is relatively low, large AT occurs with higher humidity. Notably, in future warmer climate conditions, high AT may first appear in the five major cities and then extend to the surrounding areas. An increase in TAS and RH during the pre-hot season (March to June) may lead to earlier occurrence of thermal risks in future warmer climate conditions and more frequent occurrence of high thermal stress events. Our study can serve as a reference for future information on thermal risk changes in Korea. Considering those who have not adapted to high temperature environments, our findings imply that thermal risks will become more serious and that heat adaptation strategies will be needed during the pre-hot season under future warmer climate conditions.


Assuntos
Clima , Humanos , Umidade , Estações do Ano , Seul , Temperatura Alta
2.
PLoS One ; 17(6): e0269267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35658064

RESUMO

The East Asian summer monsoon (EASM) is an influential monsoon system that provides two-thirds of the annual precipitation in the Asian region. Therefore, considerable attention has been paid to the changes in future climate. Thus far, studies on EASM characteristics have not been conducted considering specific global warming level (GWL) using Coupled Model Inter-comparison Project 6 (CMIP6) simulations. We analyze the EASM characteristics in present-day (PD) and the changes in EASM corresponding to the projections at 1.5, 2.0, and 3.0°C GWLs. The newly released 30 CMIP6 models effectively captured the migration of the monsoon in PD with a pattern correlation coefficient of 0.91, which is an improvement over that reported in previous studies. As a result of the separate analysis of the P1 (first primary peak; 33-41 pentad) and P2 (from P1 to the withdrawal; 42-50 pentad) periods, a higher frequency of weak to moderate precipitation in P2 and a smaller amount of moderate to extreme precipitation in P1 are mainly occurred. The CMIP6 models project increasing precipitation of approximately 5.7%°C-1, 4.0%°C-1, and 3.9%°C-1 for the three GWLs, respectively, with longer durations (earlier onset and delayed termination). Under the three GWLs, the projected precipitation frequency decreases below 6 mm d-1 (76th percentile) and significant increases above 29 mm d-1 (97th percentile). These changes in precipitation frequency are associated with an increasing distribution of precipitation amount above 97th percentile. Additionally, these tendencies in P1 and P2 are similar to that of the total period, while the maximum changes occur in 3.0°C GWL. In particular, future changes in EASM accelerate with continuous warming and are mainly affected by enhanced extreme precipitation (above 97th percentile). Our findings are expected to provide information for the implementation of sustainable water management programs as a part of national climate policy.


Assuntos
Mudança Climática , Tempestades Ciclônicas , Clima , Previsões , Estações do Ano
3.
Artigo em Inglês | MEDLINE | ID: mdl-34201984

RESUMO

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ásia , China , Exposição Ambiental , Ásia Oriental , Índia , Material Particulado/análise
4.
Carbon Balance Manag ; 14(1): 13, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511994

RESUMO

BACKGROUND: It is important to quantify changes in CO2 sources and sinks with land use and land cover change. In the last several decades, carbon sources and sinks in East Asia have been altered by intensive land cover changes due to rapid economic growth and related urbanization. To understand impact of urbanization on carbon cycle in the monsoon Asia, we analyze net CO2 exchanges for various land cover types across an urbanization gradient in Korea covering high-rise high-density residential, suburban, cropland, and subtropical forest areas. RESULTS: Our analysis demonstrates that the urban residential and suburban areas are constant CO2 sources throughout the year (2.75 and 1.02 kg C m-2 year-1 at the urban and suburban sites), and the net CO2 emission indicate impacts of urban vegetation that responds to the seasonal progression of the monsoon. However, the total random uncertainties of measurement are much larger in the urban and suburban areas than at the nonurban sites, which can make it challenging to obtain accurate urban flux measurements. The cropland and forest sites are strong carbon sinks because of a double-cropping system and favorable climate conditions during the study period, respectively (- 0.73 and - 0.60 kg C m-2 year-1 at the cropland and forest sites, respectively). The urban area of high population density (15,000 persons km-2) shows a relatively weak CO2 emission rate per capita (0.7 t CO2 year-1 person-1), especially in winter because of a district heating system and smaller traffic volume. The suburban area shows larger net CO2 emissions per capita (4.9 t CO2 year-1 person-1) because of a high traffic volume, despite a smaller building fraction and population density (770 persons km-2). CONCLUSIONS: We show that in situ flux observation is challenging because of its larger random uncertainty and this larger uncertainty should be carefully considered in urban studies. Our findings indicate the important role of urban vegetation in the carbon balance and its interaction with the monsoon activity in East Asia. Urban planning in the monsoon Asia must consider interaction on change in the monsoon activity and urban structure and function for sustainable city in a changing climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA