Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846434

RESUMO

We present a lightweight tool for clonotyping and measurable residual disease (MRD) assessment in monoclonal lymphoproliferative disorders. It is a translational method that enables computational detection of rearranged immunoglobulin heavy chain gene sequences.•The swigh-score clonotyping tool emphasizes parallelization and applicability across sequencing platforms.•The algorithm is based on an adaptation of the Smith-Waterman algorithm for local alignment of reads generated by 2nd and 3rd generation of sequencers.For method validation, we demonstrate the targeted sequences of immunoglobulin heavy chain genes from diagnostic bone marrow using serial dilutions of CD138+ plasma cells from a patient with multiple myeloma. Sequencing libraries from diagnostic samples were prepared for the three sequencing platforms, Ion S5 (Thermo Fisher Scientific), MiSeq (Illumina), and MinION (Oxford Nanopore), using the LymphoTrack assay. Basic quality filtering was performed, and a Smith-Waterman-based swigh-score algorithm was developed in shell and C for clonotyping and MRD assessment using FASTQ data files. Performance is demonstrated across the three different sequencing platforms.

3.
EJHaem ; 5(1): 290-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406528

RESUMO

Lymphoid malignancies are characterized by clonal cell expansion, often identifiable by unique immunoglobulin rearrangements. Heavy (IGH) and light-chain gene usage offers diagnostic insights and enables sensitive residual disease detection via next-generation sequencing. With its adaptable throughput and variable read lengths, Oxford Nanopore thirdgeneration sequencing now holds promise for clonotyping. This study analyzed CD138+ plasma-cell DNA from eight multiple myeloma patients, comparing clonotyping performance between Nanopore sequencing, Illumina MiSeq, and Ion Torrent S5. We demonstrated clonotype consistency across platforms through Smith-Waterman local alignment of nanopore reads. The mean clonal percentage of IGH V and J gene usage in the CD138+ cells was 69% for Nanopore, 67% for S5, and 76% for MiSeq. When aligned with known clonotypes, clonal cells averaged a 91% similarity, exceeding 85%. In summary, Nanopore sequencing, with its capacity for generating millions of high-quality reads, proves effective for detecting clonal IGH rearrangements. This versatile platform offers the potential for measuring residual disease down to a sensitivity level of 10-6 at a lower cost, marking a significant advancement in clonotyping techniques.

4.
J Mol Diagn ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683892

RESUMO

The current advances and success of next-generation sequencing hold the potential for the transition of cancer cytogenetics toward comprehensive cytogenomics. However, the conventional use of short reads impedes the resolution of chromosomal aberrations with current next-generation sequencing modalities. Thus, this study evaluated the detection and reproducibility of extensive copy number alterations and chromosomal translocations using long-read Oxford Nanopore Technologies whole-genome sequencing compared with short-read Illumina sequencing. On the basis of the mantle cell lymphoma cell line Granta-519, almost 99% copy number reproducibility at the 100-kilobase resolution between replicates was demonstrated, with 98% concordance to Illumina. Collectively, the performance of copy number calling from 1.5 million to 7.5 million long reads was comparable to 1 billion Illumina-based reads (50× coverage). Expectedly, the long-read resolution of canonical translocation t(11; 14) (q13; q32) was superior, with a sequence similarity of 89% to the already published CCND1/IGH junction (9× coverage), spanning up to 69 kilobases. The cytogenetic profile of Granta-519 was in general agreement with the literature and karyotype, although several differences remained unresolved. In conclusion, contemporary long-read sequencing is primed for future cytogenomics or sequencing-guided cytogenetics. The combined strength of long- and short-read sequencing is apparent, where the high-precision junctional mapping complements and splits paired-end reads. The potential is emphasized by the flexible single-sample genomic data acquisition of Oxford Nanopore Technologies with the high resolution of allelic imbalances using Illumina short-read sequencing.

5.
Int J Lab Hematol ; 45(5): 735-742, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37350020

RESUMO

INTRODUCTION: Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in the western world. It is highly heterogeneous with a variable clinical course, but curable with chemo-immunotherapy in up to 70% of all cases. The lymphoma presents in lymph nodes and/or extranodal lymphoid tissue, and the diagnosis is based on invasive procedures for histopathologic evaluation. METHODS: In this technical study, we evaluated cell-free DNA (cfDNA) from blood plasma to detect clonal B cells in patients with DLBCL using rearranged immunoglobulin heavy chain gene as targets by next-generation sequencing. Clonal B cell sequences and frequencies were determined from blood plasma cfDNA and cellular DNA from matched excised lymphoma tissues and mononuclear cells isolated from diagnostic bone marrow and blood samples from 15 patients. RESULTS: We showed that identical clonal rearrangements could be detected in blood plasma and excised lymphoma tissue and that plasma cfDNA was superior in detecting clonal rearrangements compared to blood or bone marrow-derived cellular DNA. CONCLUSION: These findings consolidate the role of blood plasma as a reliable and easily accessible source for detecting neoplastic cells in DLBCL.


Assuntos
Linfócitos B , Ácidos Nucleicos Livres , Linfoma Difuso de Grandes Células B , Linfoma Difuso de Grandes Células B/sangue , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Humanos , Ácidos Nucleicos Livres/sangue , Linfócitos B/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Genes de Cadeia Pesada de Imunoglobulina
6.
Exp Hematol ; 119-120: 14-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36708872

RESUMO

Multiple myeloma, a mature B-cell neoplasm, is the second most common hematologic malignancy. Despite advancements in treatment, the disease remains incurable, with more than 100,000 annual deaths worldwide. As recommended by the International Myeloma Working Group, measurable residual disease (MRD) should be addressed at a 10-5 sensitivity level or beyond for practical purposes. Next-generation sequencing (NGS) has provided new opportunities with deep sequencing of clonal rearrangements of the immunoglobulin heavy chain (IGH) locus in B-cell malignancies. Although the ability to resolve one cancerous cell in a million other B cells is becoming attractive as a prognostic indicator in sustained patients who are MRD-negative, reaching consistent sensitivity levels is challenging because of sample stochasticity and the substantial amount of deoxyribonucleic acid (DNA) required for library preparation. Thus, in the presented study, we implemented ultra-deep sequencing of rearranged IGH to investigate the reproducibility and consistency aimed at the 10-5 sensitivity level. In this controlled setup, our data provided stable MRD detection of 1.2 clonal cells per 100,000 analyzed cells and longitudinal reproducibility. We also demonstrated a low false-negative rate using 4-5 replicates and 700-800 ng DNA per sequencing replicate. In conclusion, adding an internal control to the replicates enabled clonal cell normalization for MRD evaluation as a stable reference. These findings may guide MRD-level reporting and comparisons between laboratories.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Reprodutibilidade dos Testes , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
7.
Genomics ; 114(6): 110510, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272495

RESUMO

Copy-number aberrations (CNAs) are assessed using FISH analysis in diagnostics of chronic lymphocytic leukemia (CLL), but CNAs can also be extrapolated from Illumina BeadChips developed for genome-wide methylation microarray screening. Increasing numbers of microarray data-sets are available from diagnostic samples, making it useful to assess the potential in CNA diagnostics. We benchmarked the limitations of CNA testing from two Illumina BeadChips (EPIC and 450k) and using two common packages for analysis (conumee and ChAMP) to FISH-based assessment of 11q, 13q, and 17p deletions in 202 CLL samples. Overall, the two packages predicted CNAs with similar accuracy regardless of the microarray type, but lower than FISH-based assessment. We showed that the bioinformatics analysis needs to be adjusted to the specific CNA, as no general settings were identified. Altogether, we were able to predict CNAs using methylation microarray data, however, with limited accuracy, making FISH-based assessment of deletions the superior diagnostic choice.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Biologia Computacional
8.
Leuk Res Rep ; 18: 100341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36039182

RESUMO

High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) has become a treatment option for fit patients with mantle cell lymphoma (MCL). However, these patients often relapse within few years, potentially caused by contaminating lymphoma cells within the reinfused stem cell product (SCP). Studies have shown that measurable residual disease, also termed minimal residual disease (MRD), following ASCT predicts shorter survival. Using next-generation sequencing, we explore whether the diagnostic MCL clonotype is present within the infused SCP. MRD was detected in 4/17 of the SCPs, ranging 4-568 clonal cells/100,000 cells. With a median survival of 17 months, 3/4 of patients with MRD+ graft succumbed from MCL relapse versus 2/13 in the MRD- fraction. Patients receiving MRD+ grafts had increased risk of mortality, and thus screening of SCPs may be important for clinical decision-making.

9.
Neuro Oncol ; 24(7): 1074-1087, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964899

RESUMO

BACKGROUND: Glioblastomas are highly resistant to therapy, and virtually all patients experience tumor recurrence after standard-of-care treatment. Surgical tumor resection is a cornerstone in glioblastoma therapy, but its impact on cellular phenotypes in the local postsurgical microenvironment has yet to be fully elucidated. METHODS: We developed a preclinical orthotopic xenograft tumor resection model in rats with integrated 18F-FET PET/CT imaging. Primary and recurrent tumors were subject to bulk and single-cell RNA sequencing. Differentially expressed genes and pathways were investigated and validated using tissue specimens from the xenograft model, 23 patients with matched primary/recurrent tumors, and a cohort including 190 glioblastoma patients. Functional investigations were performed in vitro with multiple patient-derived cell cultures. RESULTS: Tumor resection induced microglia/macrophage infiltration, angiogenesis as well as proliferation and upregulation of several stem cell-related genes in recurrent tumor cells. Expression changes of selected genes SOX2, POU3F2, OLIG2, and NOTCH1 were validated at the protein level in xenografts and early recurrent patient tumors. Single-cell transcriptomics revealed the presence of distinct phenotypic cell clusters in recurrent tumors which deviated from clusters found in primary tumors. Recurrent tumors expressed elevated levels of pleiotrophin (PTN), secreted by both tumor cells and tumor-associated microglia/macrophages. Mechanistically, PTN could induce tumor cell proliferation, self-renewal, and the stem cell program. In glioblastoma patients, high PTN expression was associated with poor overall survival and identified as an independent prognostic factor. CONCLUSION: Surgical tumor resection is an iatrogenic driver of PTN-mediated self-renewal in glioblastoma tumor cells that promotes therapeutic resistance and tumor recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Proteínas de Transporte , Citocinas , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Células-Tronco , Microambiente Tumoral
11.
Sci Rep ; 11(1): 19092, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580376

RESUMO

Mantle cell lymphoma (MCL) is a malignancy arising from naive B lymphocytes with common bone marrow (BM) involvement. Although t(11;14) is a primary event in MCL development, the highly diverse molecular etiology and causal genomic events are still being explored. We investigated the transcriptome of CD19+ BM cells from eight MCL patients at single-cell level. The transcriptomes revealed marked heterogeneity across patients, while general homogeneity and clonal continuity was observed within the patients with no clear evidence of subclonal involvement. All patients were SOX11+CCND1+CD20+. Despite monotypic surface immunoglobulin (Ig) κ or λ protein expression in MCL, 10.9% of the SOX11 + malignant cells expressed both light chain transcripts. The early lymphocyte transcription factor SOX4 was expressed in a fraction of SOX11 + cells in two patients and co-expressed with the precursor lymphoblastic marker, FAT1, in a blastoid case, suggesting a potential prognostic role. Additionally, SOX4 was found to identify non-malignant SOX11- pro-/pre-B cell populations. Altogether, the observed expression of markers such as SOX4, CD27, IgA and IgG in the SOX11+ MCL cells, may suggest that the malignant cells are not fixed in the differentiation state of naïve mature B cells, but instead the patients carry B lymphocytes of different differentiation stages.


Assuntos
Linfócitos B/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfoma de Célula do Manto/genética , Fatores de Transcrição SOXC/metabolismo , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/patologia , Diferenciação Celular/genética , Feminino , Humanos , Linfoma de Célula do Manto/patologia , Masculino , Pessoa de Meia-Idade , RNA-Seq , Análise de Célula Única
12.
Leuk Res Rep ; 15: 100255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150491

RESUMO

Relapse involving the central nervous system (CNS) is an infrequent event in the progression of mantle cell lymphoma (MCL) with an incidence of approximately four percent. We report four cases of MCL with CNS relapse. In three of the four patients a large chromosomal copy-number alteration (CNA) of 1q was demonstrated together with TP53 mutation/deletion. These patients experienced brief response to ibrutinib, whereas a fourth patient harboring mutated ATM demonstrated a long-term effect to ibrutinib and no CNA. Although it is unclear whether chromosome 1q CNA contribute to specific phenotypes these reports may be of value as such lesions are uncommon features of MCL.

13.
Exp Hematol ; 98: 14-24, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823225

RESUMO

Malignant lymphoproliferative disorders collectively constitute a large fraction of the hematological cancers, ranging from indolent to highly aggressive neoplasms. Being a diagnostically important hallmark, clonal gene rearrangements of the immunoglobulins enable the detection of residual disease in the clinical course of patients down to a minute fraction of malignant cells. The introduction of next-generation sequencing (NGS) has provided unprecedented assay specificity, with a sensitivity matching that of polymerase chain reaction-based measurable residual disease (MRD) detection down to the 10-6 level. Although reaching 10-6 to 10-7 is theoretically feasible, employing a sufficient amount of DNA and sequencing coverage is placed in the perspective of the practical challenges when relying on clinical samples in contrast to controlled serial dilutions. As we discuss, the randomness of subsampling must be taken into account to accommodate the sensitivity threshold-in terms of both the required number of cells and sequencing coverage. As a substantial part of the reviewed studies do not state the depth of coverage or even amount of DNA in some cases, we call for increased transparency to enable critical assessment of the MRD assays for clinical implementation and feasibility.


Assuntos
DNA de Neoplasias/genética , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Transtornos Linfoproliferativos/genética , Reação em Cadeia da Polimerase , DNA de Neoplasias/sangue , Humanos , Transtornos Linfoproliferativos/sangue , Transtornos Linfoproliferativos/terapia , Neoplasia Residual
15.
Exp Hematol ; 84: 7-18.e12, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32173361

RESUMO

Mantle cell lymphoma (MCL) is a tumor with a poor prognosis. A few studies have examined the molecular landscape by next-generation sequencing and provided valuable insights into recurrent lesions driving this heterogeneous cancer. However, none has attempted to cross-link the individual genomic and transcriptomic profiles in sorted MCL cells to perform individual molecular characterizations of the lymphomas. Such approaches are relevant as MCL is heterogenous by nature, and thorough molecular diagnostics may potentially benefit the patient with more focused treatment options. In the work described here, we used sorted lymphoma cells from four patients at diagnosis and relapse by intersecting the coding DNA and mRNA. Even though only a few patients were included, this method enabled us to pinpoint a specific set of expressed somatic mutations, to present an overall expression profile different from the normal B cell counterparts, and to track molecular aberrations from diagnosis to relapse. Changes in single-nucleotide coding variants, subtle clonal changes in large-copy-number alterations, subclonal involvement, and changes in expression levels in the clinical course provided detailed information on each of the individual malignancies. In addition to mutations in known genes (e.g., TP53, CCND1, NOTCH1, ATM), we identified others, not linked to MCL, such as a nonsense mutation in SPEN and an MYD88 missense mutation in one patient, which along with copy number alterations exhibited a molecular resemblance to splenic marginal zone lymphoma. The detailed exonic and transcriptomic portraits of the individual MCL patients obtained by the methodology presented here could help in diagnostics, surveillance, and potentially more precise usage of therapeutic drugs by efficient screening of biomarkers.


Assuntos
Linfócitos B , Citometria de Fluxo , Linfoma de Célula do Manto , Mutação , Proteínas de Neoplasias , Adulto , Linfócitos B/metabolismo , Linfócitos B/patologia , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética
16.
Clin Cancer Res ; 25(23): 7046-7057, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31439577

RESUMO

PURPOSE: T cells engineered to express a chimeric antigen receptor (CAR) against CD19 have recently been FDA approved for the treatment of relapsed or refractory large B-cell lymphoma. Despite the success and curative potential of CD19 CAR T cells, several reports describing disease relapse due to antigen loss are now emerging. EXPERIMENTAL DESIGN: We developed a novel CAR construct directed against CD79b, a critical receptor for successful B-cell development that remains highly expressed in several subtypes of B-cell lymphoma, including mantle cell lymphoma (MCL). We tested CAR T cells directed against CD79b alone or in combination with CD19 targeting in a single construct, against cell line- and patient-derived xenograft models. RESULTS: We demonstrate CAR79b antigen-specific recognition and cytotoxicity against a panel of cell lines and patient-derived xenograft models of MCL. Importantly, we show that downregulation of CD19 does not influence surface expression of CD79b and that anti-CD79b CAR T cells alone or arranged in a dual-targeting format with a CD19 single-chain variable fragment (scFv) are able to recognize and eliminate CD19+, CD19-, and mixed CD19+/CD19-B-cell lymphoma. CONCLUSIONS: Our findings demonstrate that CAR T cells targeting CD79b alone or in combination have promise for treating and preventing CD19 antigen escape in B-cell lymphomas.


Assuntos
Antígenos CD19/imunologia , Antígenos CD79/imunologia , Imunoterapia Adotiva/métodos , Linfoma de Célula do Manto/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Apoptose , Proliferação de Células , Humanos , Ativação Linfocitária , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nat Commun ; 9(1): 1262, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593265

RESUMO

Medullary thymic epithelial cells (mTEC) purge the T cell repertoire of autoreactive thymocytes. Although dendritic cells (DC) reinforce this process by transporting innocuous peripheral self-antigens, the mechanisms that control their thymic entry remain unclear. Here we show that mTEC-CD4+ thymocyte crosstalk regulates the thymus homing of SHPS-1+ conventional DCs (cDC), plasmacytoid DCs (pDC) and macrophages. This homing process is controlled by lymphotoxin α (LTα), which negatively regulates CCL2, CCL8 and CCL12 chemokines in mTECs. Consequently, Ltα-deficient mice have increased expression of these chemokines that correlates with augmented classical NF-κB subunits and increased thymic recruitment of cDCs, pDCs and macrophages. This enhanced migration depends mainly on the chemokine receptor CCR2, and increases thymic clonal deletion. Altogether, this study identifies a fine-tuning mechanism of T cell repertoire selection and paves the way for therapeutic interventions to treat autoimmune disorders.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Deleção Clonal , Linfotoxina-alfa/metabolismo , Timo/imunologia , Animais , Antígenos/imunologia , Células da Medula Óssea/imunologia , Quimiocinas/imunologia , Técnicas de Cocultura , Células Dendríticas/imunologia , Feminino , Deleção de Genes , Tolerância Imunológica , Ligantes , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , NF-kappa B/metabolismo , Receptores CCR2/metabolismo , Linfócitos T/imunologia , Timócitos/imunologia
19.
Front Cell Neurosci ; 12: 523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687013

RESUMO

Microglia are resident immune cells of the central nervous system. Their development and maintenance depend on stimulation of Colony Stimulating Factor-1 receptor (CSF1R). Microglia play an important role in neurodevelopment and a population of microglia that expresses the complement receptor CD11c is critical for primary myelination. This population is virtually absent in the healthy adult brain but increases dramatically upon neuroinflammatory conditions, and these microglia are suggested to play a protective role in central nervous system (CNS) diseases. To date, the molecular trigger for their expansion is unknown. Here we showed that stimulation of CSF1R by either of its ligands, CSF1 and interleukin (IL)-34, can induce expansion of CD11c+ microglia. In addition, such stimulation resulted in amelioration of EAE symptoms and decreased demyelination. Treatment with CSF1R ligands also induced expression of the chemokine CCL2, and we showed that experimental overexpression of CCL2 in the brain led to a dramatic increase of CD11c+ microglia, independent of CCR2. Moreover, this led to elevated CSF1 expression, suggesting a positive feedback loop between CSF1R and CCL2. These data provide new insights to microglia biology and open new perspectives for modulating microglial activity in neuroinflammatory diseases such as multiple sclerosis.

20.
Immunol Lett ; 192: 72-78, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29106985

RESUMO

Thymic dendritic cells (DC) play a role in central tolerance. Three thymic DC subtypes have been described: plasmacytoid DC (pDC) and two conventional DC (cDC), CD8α+ Sirpα- DC and Sirpα+ CD8α- cDC. Both pDC and Sirpα+ cDC can take up antigen in periphery and migrate into the thymus in response to chemokine signaling via CCR9 and CCR2 respectively. CCL2 is a major ligand for CCR2 and we previously showed that it was constitutively expressed in thymus, and that mice overexpressing CCL2 in thymus had reduced numbers of autoreactive T cells but elevated numbers of pDC. We have here investigated the role of CCL2-CCR2 axis in thymic pDC migration. We found that pDC expressed CCR2 at a high level and that their frequency was decreased in thymus, spleen and inguinal lymph nodes in mice lacking CCR2, but not in mice lacking CCL2. pDC migration towards the cortex or medulla within the thymus was not affected by CCL2 or CCR2 deficiency. Although some thymic progenitors expressed CCR2, this did not include those that give rise to pDC. Based on these results, we propose that CCR2 is involved in pDC homeostasis but its ligand CCL2 does not play a major role.


Assuntos
Células Dendríticas/imunologia , Receptores CCR2/metabolismo , Linfócitos T/imunologia , Timo/imunologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocina CCL2/genética , Feminino , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA