Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365358

RESUMO

The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best economic weights of four major wheat diseases (leaf spot, common bunt, leaf rust, and stripe rust) and grain yield for multi-trait restrictive linear phenotypic selection index (RLPSI), (b) select the top 10% cultivars and lines (hereafter referred as genotypes) with better resistance to combinations of the four diseases and acceptable grain yield as potential parents, and (c) map genomic regions associated with resistance to each disease using genome-wide association study (GWAS). A diversity panel of 196 spring wheat genotypes was evaluated for their reaction to stripe rust at eight environments, leaf rust at four environments, leaf spot at three environments, common bunt at two environments, and grain yield at five environments. The panel was genotyped with the Wheat 90K SNP array and a few KASP SNPs of which we used 23,342 markers for statistical analyses. The RLPSI analysis performed by restricting the expected genetic gain for yield displayed significant (p < 0.05) differences among the 3125 economic weights. Using the best four economic weights, a subset of 22 of the 196 genotypes were selected as potential parents with resistance to the four diseases and acceptable grain yield. GWAS identified 37 genomic regions, which included 12 for common bunt, 13 for leaf rust, 5 for stripe rust, and 7 for leaf spot. Each genomic region explained from 6.6 to 16.9% and together accounted for 39.4% of the stripe rust, 49.1% of the leaf spot, 94.0% of the leaf rust, and 97.9% of the common bunt phenotypic variance combined across all environments. Results from this study provide valuable information for wheat breeders selecting parental combinations for new crosses to develop improved germplasm with enhanced resistance to the four diseases as well as the physical positions of genomic regions that confer resistance, which facilitates direct comparisons for independent mapping studies in the future.

2.
Crop Sci ; 62(2): 537-563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911794

RESUMO

A linear selection index (LSI) can be a linear combination of phenotypic values, marker scores, and genomic estimated breeding values (GEBVs); phenotypic values and marker scores; or phenotypic values and GEBVs jointly. The main objective of the LSI is to predict the net genetic merit (H), which is a linear combination of unobservable individual traits' breeding values, weighted by the trait economic values; thus, the target of LSI is not a parameter but rather the unobserved random H values. The LSI can be single-stage or multi-stage, where the latter are methods for selecting one or more individual traits available at different times or stages of development in both plants and animals. Likewise, LSIs can be either constrained or unconstrained. A constrained LSI imposes predetermined genetic gain on expected genetic gain per trait and includes the unconstrained LSI as particular cases. The main LSI parameters are the selection response, the expected genetic gain per trait, and its correlation with H. When the population mean is zero, the selection response and expected genetic gain per trait are, respectively, the conditional mean of H and the genotypic values, given the LSI values. The application of LSI theory is rapidly diversifying; however, because LSIs are based on the best linear predictor and on the canonical correlation theory, the LSI theory can be explained in a simple form. We provided a review of the statistical theory of the LSI from phenotypic to genomic selection showing their relationships, advantages, and limitations, which should allow breeders to use the LSI theory confidently in breeding programs.

3.
Plants (Basel) ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890521

RESUMO

Both the Linear Phenotypic Selection Index (LPSI) and the Restrictive Linear Phenotypic Selection Index (RLPSI) have been widely used to select parents and progenies, but the effect of economic weights on the selection parameters (the expected genetic gain, response to selection, and the correlation between the indices and genetic merits) have not been investigated in detail. Here, we (i) assessed combinations of 2304 economic weights using four traits (maturity, plant height, grain yield and grain protein content) recorded under four organically (low nitrogen) and five conventionally (high nitrogen) managed environments, (ii) compared single-trait and multi-trait selection indices (LPSI vs. RLPSI by imposing restrictions to the expected genetic gain of either yield or grain protein content), and (iii) selected a subset of about 10% spring wheat cultivars that performed very well under organic and/or conventional management systems. The multi-trait selection indices, with and without imposing restrictions, were superior to single trait selection. However, the selection parameters differed quite a lot depending on the economic weights, which suggests the need for optimizing the weights. Twenty-two of the 196 cultivars that showed superior performance under organic and/or conventional management systems were consistently selected using all five of the selected economic weights, and at least two of the selection scenarios. The selected cultivars belonged to the Canada Western Red Spring (16 cultivars), the Canada Northern Hard Red (3), and the Canada Prairie Spring Red (3), and required 83-93 days to maturity, were 72-100 cm tall, and produced from 4.0 to 6.2 t ha-1 grain yield with 14.6-17.7% GPC. The selected cultivars would be highly useful, not only as potential trait donors for breeding under an organic management system, but also for other studies, including nitrogen use efficiency.

4.
Theor Appl Genet ; 133(9): 2743-2758, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32561956

RESUMO

KEY MESSAGE: The expectation and variance of the estimator of the maximized index selection response allow the breeders to construct confidence intervals and to complete the analysis of a selection process. The maximized selection response and the correlation of the linear selection index (LSI) with the net genetic merit are the main criterion to compare the efficiency of any LSI. The estimator of the maximized selection response is the square root of the variance of the estimated LSI values multiplied by the selection intensity. The expectation and variance of this estimator allow the breeder to construct confidence intervals and determine the appropriate sample size to complete the analysis of a selection process. Assuming that the estimated LSI values have normal distribution, we obtained those two parameters as follows. First, with the Fourier transform, we found the distribution of the variance of the estimated LSI values, which was a Gamma distribution; therefore, the expectation and variance of this distribution were the expectation and variance of the variance of the estimated LSI values. Second, with these results, we obtained the expectation and the variance of the estimator of the selection response using the Delta method. We validated the theoretical results in the phenotypic selection context using real and simulated dataset. With the simulated dataset, we compared the LSI efficiency when the genotypic covariance matrix is known versus when this matrix is estimated; the differences were not significant. We concluded that our results are valid for any LSI with normal distribution and that the method described in this work is useful for finding the expectation and variance of the estimator of any LSI response in the phenotypic or genomic selection context.


Assuntos
Modelos Genéticos , Seleção Genética , Simulação por Computador , Distribuição Normal , Melhoramento Vegetal
5.
G3 (Bethesda) ; 10(6): 2087-2101, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312840

RESUMO

A combined multistage linear genomic selection index (CMLGSI) is a linear combination of phenotypic and genomic estimated breeding values useful for predicting the individual net genetic merit, which in turn is a linear combination of the true unobservable breeding values of the traits weighted by their respective economic values. The CMLGSI is a cost-saving strategy for improving multiple traits because the breeder does not need to measure all traits at each stage. The optimum (OCMLGSI) and decorrelated (DCMLGSI) indices are the main CMLGSIs. Whereas the OCMLGSI takes into consideration the index correlation values among stages, the DCMLGSI imposes the restriction that the index correlation values among stages be zero. Using real and simulated datasets, we compared the efficiency of both indices in a two-stage context. The criteria we applied to compare the efficiency of both indices were that the total selection response of each index must be lower than or equal to the single-stage combined linear genomic selection index (CLGSI) response and that the correlation of each index with the net genetic merit should be maximum. Using four different total proportions for the real dataset, the estimated total OCMLGSI and DCMLGSI responses explained 97.5% and 90%, respectively, of the estimated single-stage CLGSI selection response. In addition, at stage two, the estimated correlations of the OCMLGSI and the DCMLGSI with the net genetic merit were 0.84 and 0.63, respectively. We found similar results for the simulated datasets. Thus, we recommend using the OCMLGSI when performing multistage selection.


Assuntos
Melhoramento Vegetal , Seleção Genética , Genoma , Genômica , Genótipo , Modelos Genéticos , Fenótipo
6.
G3 (Bethesda) ; 9(12): 3981-3994, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31570501

RESUMO

The constrained linear genomic selection index (CLGSI) is a linear combination of genomic estimated breeding values useful for predicting the net genetic merit, which in turn is a linear combination of true unobservable breeding values of the traits weighted by their respective economic values. The CLGSI is the most general genomic index and allows imposing constraints on the expected genetic gain per trait to make some traits change their mean values based on a predetermined level, while the rest of them remain without restrictions. In addition, it includes the unconstrained linear genomic index as a particular case. Using two real datasets and simulated data for seven selection cycles, we compared the theoretical results of the CLGSI with the theoretical results of the constrained linear phenotypic selection index (CLPSI). The criteria used to compare CLGSI vs. CLPSI efficiency were the estimated expected genetic gain per trait values, the selection response, and the interval between selection cycles. The results indicated that because the interval between selection cycles is shorter for the CLGSI than for the CLPSI, CLGSI is more efficient than CLPSI per unit of time, but its efficiency could be lower per selection cycle. Thus, CLGSI is a good option for performing genomic selection when there are genotyped candidates for selection.


Assuntos
Genômica , Seleção Genética , Zea mays/genética , Simulação por Computador , Cruzamentos Genéticos , Bases de Dados Genéticas , Genoma de Planta , Fenótipo , Melhoramento Vegetal , Característica Quantitativa Herdável
7.
Crop Sci ; 59: 2585-2600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33343016

RESUMO

Some authors have evaluated the unconstrained optimum and decorrelated multistage linear phenotypic selection indices (OMLPSI and DMLPSI, respectively) theory. We extended this index theory to the constrained multistage linear phenotypic selection index context, where we denoted OMLPSI and DMLPSI as OCMLPSI and DCMLPSI, respectively. The OCMLPSI (DCMLPSI) is the most general multistage index and includes the OMLPSI (DMLPSI) as a particular case. The OCMLPSI (DCMLPSI) predicts the individual net genetic merit at different individual ages and allows imposing constraints on the genetic gains to make some traits change their mean values based on a predetermined level, while the rest of them remain without restrictions. The OCMLPSI takes into consideration the index correlation values among stages, whereas the DCMLPSI imposes the restriction that the index correlation values among stages be null. The criteria to evaluate OCMLPSI efficiency vs. DCMLPSI efficiency were that the total response of each index must be lower than or equal to the single-stage constrained linear phenotypic selection index response and that the expected genetic gain per trait values should be similar to the constraints imposed by the breeder. We used one real and one simulated dataset to validate the efficiency of the indices. The results indicated that OCMLPSI accuracy when predicting the selection response and expected genetic gain per trait was higher than DCMLPSI accuracy when predicting them. Thus, breeders should use the OCMLPSI when making a phenotypic selection.

8.
G3 (Bethesda) ; 5(10): 2155-64, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26290571

RESUMO

A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors have proposed a GSI; however, they have not used simulated or real data to validate the GSI theory and have not explained how to estimate the GSI selection response and the GSI expected genetic gain per selection cycle for the unobserved traits after the first selection cycle to obtain information about the genetic gains in each subsequent selection cycle. In this paper, we develop the theory of a GSI and apply it to two simulated and four real data sets with four traits. Also, we numerically compare its efficiency with that of the phenotypic selection index (PSI) by using the ratio of the GSI response over the PSI response, and the PSI and GSI expected genetic gain per selection cycle for observed and unobserved traits, respectively. In addition, we used the Technow inequality to compare GSI vs. PSI efficiency. Results from the simulated data were confirmed by the real data, indicating that GSI was more efficient than PSI per unit of time.


Assuntos
Simulação por Computador , Modelos Genéticos , Seleção Genética , Algoritmos , Conjuntos de Dados como Assunto
9.
Genetics ; 180(1): 547-57, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18716338

RESUMO

The traditional molecular selection index (MSI) employed in marker-assisted selection maximizes the selection response by combining information on molecular markers linked to quantitative trait loci (QTL) and phenotypic values of the traits of the individuals of interest. This study proposes an MSI based on an eigenanalysis method (molecular eigen selection index method, MESIM), where the first eigenvector is used as a selection index criterion, and its elements determine the proportion of the trait's contribution to the selection index. This article develops the theoretical framework of MESIM. Simulation results show that the genotypic means and the expected selection response from MESIM for each trait are equal to or greater than those from the traditional MSI. When several traits are simultaneously selected, MESIM performs well for traits with relatively low heritability. The main advantages of MESIM over the traditional molecular selection index are that its statistical sampling properties are known and that it does not require economic weights and thus can be used in practical applications when all or some of the traits need to be improved simultaneously.


Assuntos
Marcadores Genéticos , Algoritmos , Cruzamentos Genéticos , Frequência do Gene , Genes de Plantas , Genótipo , Haploidia , Desequilíbrio de Ligação , Modelos Genéticos , Herança Multifatorial , Fenótipo , Proteínas de Plantas/fisiologia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA