Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504665

RESUMO

Delia planipalpis (Stein) (Diptera: Anthomyiidae) is a pest of crucifers, such as broccoli, radish, cauliflower, turnip and cabbage. It has been recently described in Mexico as a significant emerging pest of broccoli. Due the lack of knowledge of this pest, the present study aimed to determine its life cycle, female sexual maturation, copulation, oviposition behavior and adult longevity. The identity of the fly in Mexico was confirmed genetically by sequencing the cytochrome oxidase subunit 1 gene (COI). The mean development time of D. planipalpis was 32-33 days on radish at 24 °C under laboratory conditions. Females became sexually mature 1-2 days after emergence, and the highest incidence of matings was recorded on the second day (60%). Under choice conditions, D. planipalpis females preferred to oviposit on radish plants, rather than broccoli plants, possibly due to the use of radish for rearing the laboratory colony. Oviposition and the mean number of eggs laid varied among the broccoli varieties, with the highest oviposition observed on the Tlaloc variety. Repeated attempts to rear the laboratory colony on broccoli plants failed. Radish-reared insects of both sexes lived longer when individualized in the adult stage (14.5-22.5 days) than when adult flies were maintained in groups (10-11 days). This study contributes to the understanding of D. planipalpis biology and provides information that can be used to establish future control strategies against this pest.

2.
Proc Biol Sci ; 289(1977): 20212806, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765836

RESUMO

Seminal fluid proteins (Sfps) modify female phenotypes and have wide-ranging evolutionary implications on fitness in many insects. However, in the Mexican fruit fly, Anastrepha ludens, a highly destructive agricultural pest, the functions of Sfps are still largely unknown. To gain insights into female phenotypes regulated by Sfps, we used nano-liquid chromatography mass spectrometry to conduct a proteomic analysis of the soluble proteins from reproductive organs of A. ludens. The proteins predicted to be transferred from males to females during copulation were 100 proteins from the accessory glands, 69 from the testes and 20 from the ejaculatory bulb, resulting in 141 unique proteins after accounting for redundancies from multiple tissues. These 141 included orthologues to Drosophila melanogaster proteins involved mainly in oogenesis, spermatogenesis, immune response, lifespan and fecundity. In particular, we found one protein associated with female olfactory response to repellent stimuli (Scribble), and two related to memory formation (aPKC and Shibire). Together, these results raise the possibility that A. ludens Sfps could play a role in regulating female olfactory responses and memory formation and could be indicative of novel evolutionary functions in this important agricultural pest.


Assuntos
Proteínas de Drosophila , Tephritidae , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteômica/métodos , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo , Tephritidae/metabolismo
3.
Front Physiol ; 12: 714247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566680

RESUMO

Copulation and/or ejaculate components can alter female physiological state and female post-mating behavior. The objective of the present study was to determine if copulation and male reproductive accessory gland products (MAGs) modify the behavior of female Anastrepha ludens (Loew) and Anastrepha obliqua (Macquart; Diptera: Tephritidae) in response to two stimuli: male-emitted pheromone and oviposition host volatiles. Olfactometry studies revealed that mated females of both A. ludens and A. obliqua have a stronger response for host volatiles compared to unmated females, which have a stronger response for male pheromone. We also examined olfactory responses of females mated to testectomized males who could transfer MAGs but not sperm. In both species, MAGs alone did not cause the change in the olfactory response observed after copulation, unlike what has been found in Ceratitis capitata (Wiedemann). Females mated to testectomized males responded equally to the male sex pheromone or to host volatiles, thus suggesting that the whole ejaculate is needed to elicit the complete behavioral switch in olfactory response. The function of MAGs is still unknown in these two pests of economic importance. The response for host volatiles by mated females has implications for the development of baits and traps that should preferably attract and target this population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA