Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 505: 148-163, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952851

RESUMO

Many organs contain adult stem cells (ASCs) to replace cells due to damage, disease, or normal tissue turnover. ASCs can divide asymmetrically, giving rise to a new copy of themselves (self-renewal) and a sister that commits to a specific cell type (differentiation). Decades of research have led to the identification of pleiotropic genes whose loss or gain of function affect diverse aspects of normal ASC biology. Genome-wide screens of these so-called genetic "master regulator" (MR) genes, have pointed to hundreds of putative targets that could serve as their downstream effectors. Here, we experimentally validate and characterize the regulation of several putative targets of Escargot (Esg) and the Signal Transducer and Activator of Transcription (Stat92E, a.k.a. STAT), two known MRs in Drosophila intestinal stem cells (ISCs). Our results indicate that regardless of bioinformatic predictions, most experimentally validated targets show a profile of gene expression that is consistent with co-regulation by both Esg and STAT, fitting a rather limited set of co-regulatory modalities. A bioinformatic analysis of proximal regulatory sequences in specific subsets of co-regulated targets identified additional transcription factors that might cooperate with Esg and STAT in modulating their transcription. Lastly, in vivo manipulations of validated targets rarely phenocopied the effects of manipulating Esg and STAT, suggesting the existence of complex genetic interactions among downstream targets of these two MR genes during ISC homeostasis.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Intestinos , Drosophila/metabolismo , Células-Tronco/metabolismo
2.
Bioorg Med Chem ; 94: 117438, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37757605

RESUMO

Six monomeric (1a-1f) and five dimeric (2a-2e) derivatives of the triphenylmethane dye crystal violet (CV) have been prepared. Evaluation of the binding of these compounds to CT DNA by competitive fluorescent intercalator displacement (FID) assays, viscosity experiments, and UV and CD spectroscopy suggest that monomeric derivative 1a and dimeric derivative 2d likely associate with the major groove of DNA, while dimeric derivatives 2a and 2e likely associate with the minor groove of DNA. Additional evidence for the groove occupancy assignments of these derivatives was obtained from ITC experiments and from differential inhibition of DNA cleavage by the major groove binding restriction enzyme BamHI, as revealed by agarose gel electrophoresis. The data indicate that major groove ligands may be optimally constructed from dye units containing a sterically bulky 3,5-dimethyl-N,N-dimethylaniline group; furthermore, the groove-selectivity of olefin-tethered dimer 2d suggests that stereoelectronic interactions (n â†’ π*) between the ligand and DNA are also an important design consideration in the crafting of major-groove binding ligands.


Assuntos
DNA , Violeta Genciana , Modelos Moleculares , DNA/química , Análise Espectral , Substâncias Intercalantes/química , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA