Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608019

RESUMO

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Assuntos
Doença de Charcot-Marie-Tooth , Células de Schwann , Animais , Camundongos , Bainha de Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Mutação , Processamento de Proteína Pós-Traducional
2.
Cell Metab ; 35(8): 1373-1389.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527658

RESUMO

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, ß-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive ß-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.


Assuntos
Neoplasias Hepáticas , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Jejum , Trifosfato de Adenosina/metabolismo , Metionina Adenosiltransferase/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo
3.
Mol Ther Nucleic Acids ; 24: 274-283, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33815940

RESUMO

The c.151C>T founder mutation in COCH is a frequent cause of late-onset, dominantly inherited hearing impairment and vestibular dysfunction (DFNA9) in the Dutch/Belgian population. The initial clinical symptoms only manifest between the 3rd and 5th decade of life, which leaves ample time for therapeutic intervention. The dominant inheritance pattern and established non-haploinsufficiency disease mechanism indicate that suppressing translation of mutant COCH transcripts has high therapeutic potential. Single-molecule real-time (SMRT) sequencing resulted in the identification of 11 variants with a low population frequency (<10%) that are specific to the c.151C>T mutant COCH allele. Proof of concept was obtained that gapmer antisense oligonucleotides (AONs), directed against the c.151C>T mutation or mutant allele-specific intronic variants, are able to induce mutant COCH transcript degradation when delivered to transgenic cells expressing COCH minigenes. The most potent AON, directed against the c.151C>T mutation, was able to induce a 60% decrease in mutant COCH transcripts without affecting wild-type COCH transcript levels. Allele specificity decreased when increasing concentrations of AON were delivered to the cells. With the proven safety of AONs in humans, and rapid advancements in inner ear drug delivery, our in vitro studies indicate that AONs offer a promising treatment modality for DFNA9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA