Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 28(7): 1799-808, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23656837

RESUMO

STUDY QUESTION: Are the vasoactive peptide neurokinin B (NKB) and its preferred NK3 receptor (NK3R) differentially expressed in leiomyomas compared with normal myometrium? SUMMARY ANSWER: In leiomyomas, NKB is up-regulated and delocalized, while its preferred NK3R is also differentially regulated. WHAT IS KNOWN ALREADY: The expression of NKB/NK3R in the central nervous system is essential for proper function of the human reproductive axis. Additionally, this system is also widely expressed throughout the female genital tract. Leiomyomas impair fertility and are a major source of abnormal uterine bleeding. The aberrant synthesis of local factors can contribute to the pathological symptoms observed in women with leiomyomata. NKB could be one of these factors, since a vasoactive role of this peptide at a peripheral level has been observed in different systems and species, including humans. NK3R is strongly regulated by estrogens and its activation leads to nuclear translocation affecting chromatin structure and gene expression. STUDY DESIGN, SIZE, DURATION: Samples were obtained between 2006 and 2012 from 28 women of reproductive age at different stages of the menstrual cycle by hysterectomy. Leiomyomas and matched macroscopically normal myometrium from each woman were analysed in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS: RT-PCR, quantitative real time, immunohistochemistry and in situ hybridization were used to investigate the pattern of expression of NKB/NK3R in tissue samples. MAIN RESULTS AND THE ROLE OF CHANCE: Expression of the gene encoding NKB (TAC3) was up-regulated 20-fold in leiomyomas, compared with matched myometrium (P = 0.0008). In tumour tissue, not only connective cells, but also myometrial, endothelial and vascular smooth muscle cells express TAC3 mRNA. Immunoreactivity to NKB was preferentially located in the smooth muscle cell nuclei from normal myometrium in the secretory phase, unlike matched leiomyoma, which showed a predominant cytoplasmic expression pattern. In the normal myometrium, TACR3 mRNA showed variable expression throughout the menstrual phases, with samples showing strong, reduced or no amplification. In leiomyoma, TACR3 was significantly up-regulated compared with matched myometrium (P = 0.0349). LIMITATIONS, REASONS FOR CAUTION: This study is descriptive and although we observed clear differential regulation of the NKB/NK3R system at mRNA and immunohistochemical staining levels in leiomyoma, future functional studies are needed to determine the precise role of NKB in the myometrium in normal and pathological conditions. In addition, further analysis (e.g. in cell culture models) will be required to determine the role of NKB in the nucleus of normal smooth muscle cells, whether nuclear translocation is mediated by NK3R and the consequences of the cytoplasmic expression of NKB in tumour cells. WIDER IMPLICATIONS OF THE FINDINGS: The NKB/NK3R system dysregulation observed in leiomyoma may contribute to the pathological symptoms observed in women with leiomyomata.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leiomioma/metabolismo , Neurocinina B/metabolismo , Receptores da Neurocinina-3/metabolismo , Adulto , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Leiomioma/genética , Neurocinina B/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Neurocinina-3/genética , Regulação para Cima
2.
J Autoimmune Dis ; 5: 3, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-18625050

RESUMO

BACKGROUND: Systemic vasculitides constitute a heterogeneous group of diseases of autoimmunological origin characterized by inflammation of blood vessels and antibodies that react against autoantigens in a process that ultimately affects blood vessel walls. An important number of these patients present kidney disease. An endeavour of this area of research is the identification of autoantigens involved in these diseases. Accordingly, we used serum from a patient suffering from a microscopic polyangiitis, P-ANCA positive, manifesting a clinically atypical renal necrotizing glomerulonephritis and interstitial nephropathy for the identification of autoantigens; we also determined the prevalence of corresponding autoantibodies in other vasculitides, diabetic microangiopathy and in general population. METHODS: The patient's serum was used as a probe for the immunoscreening method SEREX to screen a human brain cDNA expression library. RESULTS: Four positive clones were isolated and sequenced. Clones Jos002 code for protein HDAC5, Jos014 for TFC4, Jos107 for RTF1, and Jos313 for POLDIP3 polymerase. The four proteins are of nuclear localization. None of them had been reported as autoantigen. Recombinant proteins were synthesised and checked as antigens by western blot with different sera from controls and patients affected with other vasculitides and diabetic microangiopathy as well. Only the serum from the patient origin of this study recognized all recombinant proteins. CONCLUSION: We identify four nuclear proteins, HDAC5, TFC4, RTF1 and POLDIP3 polymerase as new autoantigens that could be used as markers in the diagnosis of subfamilies in immune diseases, although we cannot determine the role of these proteins in the aetiopathogenic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA