Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(47): 17993-17999, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37982665

RESUMO

In this work, two ZIF-8-based biocomposites were obtained by entrapping the biomolecules benzaldehyde and methyl anthranilate via direct impregnation with fast encapsulation kinetics and high molecule payloads were achieved. The obtained biocomposites exhibit an enhanced antifungal activity against Penicilium expansum after integration in biopolymeric zein films in comparison with the action of free molecules, making these biomaterials promising candidates for food preservation and packaging applications.


Assuntos
Antifúngicos , Embalagem de Alimentos , Antifúngicos/farmacologia , Benzaldeídos
2.
ACS Appl Mater Interfaces ; 14(8): 10758-10768, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179870

RESUMO

The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations.


Assuntos
Estruturas Metalorgânicas , Antibacterianos/farmacologia , Cimenos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA