Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 6(19): 1901020, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31592140

RESUMO

Metal-organic frameworks (MOFs) are emerging materials for luminescent and photochemical applications. Armed with femto to millisecond spectroscopies, and fluorescence microscopy, the photobehaviors of two Ce-based MOFs are unravelled: Ce-NU-1000 and Ce-CAU-24-TBAPy. It is observed that both MOFs show ligand-to-cluster charge transfer reactions in ≈100 and ≈70 fs for Ce-NU-1000 and Ce-CAU-24-TBAPy, respectively. The formed charge separated states, resulting in electron and hole generation, recombine in different times for each MOF, being longer in Ce-CAU-24-TBAPy: 1.59 and 13.43 µs than in Ce-NU-1000: 0.64 and 4.91 µs. The linkers in both MOFs also undergo a very fast intramolecular charge transfer reaction in ≈160 fs. Furthermore, the Ce-NU-1000 MOF reveals excimer formation in 50 ps, and lifetime of ≈14 ns. The lack of this interlinkers event in Ce-CAU-24-TBAPy arises from topological restriction and demonstrates the structural differences between the two frameworks. Single-crystal fluorescence microscopy of Ce-CAU-24-TBAPy shows the presence of a random distribution of defects along the whole crystal, and their impact on the observed photobehavior. These findings reflect the effect of linkers topology and metal clusters orientations on the outcome of electronic excitation of reticular structure, key to their applicability in different fields of science and technology, such as photocatalysis and photonics.

2.
ACS Appl Mater Interfaces ; 10(38): 32885-32894, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30160470

RESUMO

The distribution and interactions of organic molecules adsorbed on the surface of materials play important roles in many catalytic and photonic processes. Here, we show that the length and chemical structure of the linker in new Al-ITQ metal-organic frameworks (MOFs) are fundamental for the dynamics of the dye Nile Red (NR) adsorbed on its surface. For the studied composites using Al-ITQ-4-ethylbenzoic acid (EB), Al-ITQ-4-aminobenzoic acid (AB), and Al-ITQ-EB exposed to the aniline (AN) or N, N-dimethylaniline (DMA) atmospheres, we observed a very fast (∼1.2 ps) intramolecular charge-transfer reaction in adsorbed NR molecules. For NR@Al-ITQ-EB, where the linker has a shorter aliphatic chain (two carbons), the dye molecules present a homoenergy-transfer (ET) process, which is faster (∼90 ps) than in the previously reported NR@Al-ITQ-4-heptylbenzoic acid composite with longer aliphatic chain (seven carbons, ∼220 ps). The more polar environment created by the Al-oxide nodes in Al-ITQ-EB surface around the NR populations strongly favors the ET event. When the linker structure contains phenyl amine moieties, the resulting NR@Al-ITQ-AB composites show different and rich photodynamics, in which a fast electron transfer reaction from the MOF aniline moiety to the adsorbed NR occurs in ∼17 ps, inhibiting the ET process between the dye molecules near the MOF surface. This process also was confirmed in Al-ITQ-EB MOF exposed to AN and DMA gas atmospheres, as well as NR in pure aniline. The obtained results demonstrate how modifications in the length and structure of the organic linker in this MOF change the interface interactions and outcome of the photoinduced processes in the composites. Our findings on dye-MOF interface photobehavior are relevant to the design of new materials in which the interface plays a key role in their performance in the fields of catalysis and photonics.

3.
ACS Appl Mater Interfaces ; 10(23): 20159-20169, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29779377

RESUMO

In this work, we unravel how the two-dimensional Al-ITQ-4-heptylbenzoic acid (HB) metal-organic framework (MOF) changes the interactions of Nile red (NR) adsorbed on its surface. Time-resolved emission experiments indicate the occurrence of energy transfer between adsorbed NR molecules, in abnormally long time constant of 2-2.5 ns, which gets shorter (∼0.25 ns) when the concentration of the surface-adsorbed NR increases. We identify the emission from local excited state of aggregates and charge transfer and energy transfer between adsorbed molecules. Femtosecond emission studies reveal an ultrafast process (∼425 fs) in the NR@Al-ITQ-HB composites, assigned to an intramolecular charge transfer in NR molecules. A comparison of the observed photobehavior with that of NR/SiO2 and NR/Al2O3 composites suggests that the occurrence of energy transfer in the NR@MOF complexes is a result of specific and nonspecific interactions, reflecting the different surface properties of Al-ITQ-HB that are of relevance to the reported high catalytic activity. Our results provide new knowledge for further researches on other composites with the aim to improve understanding of photocatalytic and photonic processes within MOFs.

4.
ACS Omega ; 3(2): 1600-1608, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458482

RESUMO

In this work, we unravel the photodynamics of Nile Red (NR) interacting with Al-ITQ-HB nanostructure, a new layer-type metal-organic framework (MOF) with potential catalytic and photonic applications. Steady-state spectroscopy reveals the presence of NR monomers and aggregates when interacting with the MOF structure. Time-resolved experiments provide emission lifetimes of the interacting monomers, H- and J-type aggregates. We observed contributions from two monomer populations having different environments. One monomer species emits from the local-excited state and another from a photoproduced charge-separated state resulting from an ultrafast intramolecular charge transfer (ICT). Femtosecond fluorescence experiments reveal that the ICT process occurs in ∼1 ps. Fluorescence microscopy on single crystals and agglomerates of the composites shows a homogenous distribution of the dye lifetimes within the material. This study shows that the photobehavior of NR in Al-ITQ-HB MOF is dictated by its location within the material. The reported findings using a well-known polarity probe and a new two-dimensional MOF provide information on the microenvironment of this material, which may help for designing smart MOFs with potential applications in photonics and nanocatalysis.

5.
Chemistry ; 23(30): 7238-7244, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28212459

RESUMO

Nicotinoids are agonists of the acetylcholine receptor (nAChR) and play important biochemical and pharmacological roles. Herein, we report on the structure and conformation of cotinine, and compare its molecular properties with the nicotine prototype, from which it only differs in the addition of a carbonyl group. This investigation included a theoretical survey of the effects of rotamerization of the pyridine moiety, the puckering of the pyrrolidinone ring and the internal rotation of the methyl group. The experimental work examined the rotational spectrum of the molecule in a supersonic expansion, using both broadband chirped-pulse excitation techniques and cavity microwave spectrometers. Two conformers were observed for cotinine, and the fine and hyperfine structures arising from the two quadrupolar 14 N nuclei and the methyl internal rotor were fully analyzed. The two observed conformers share the same twisted conformation of the five-membered ring, but differ in a roughly 180° rotamerization around the C-C bond connecting the two rings. The energy barriers for the internal rotation of the methyl group in cotinine (4.55(4) and 4.64(3) kJ mol-1 , respectively) are much lower than in nicotine (estimated in 16.5 kJ mol-1 ). The combination of different intramolecular electronic effects, hydrogen bonding and possible binding differences to receptor molecules arising from the carbonyl group could explain the lower affinity of cotinine for nAChRs.


Assuntos
Cotinina/química , Nicotina/química , Agonistas Nicotínicos/química , Ligação de Hidrogênio , Metilação , Modelos Moleculares , Conformação Molecular , Piridinas/química , Pirrolidinonas/química , Estereoisomerismo , Termodinâmica
6.
Chemistry ; 22(28): 9804-11, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27258776

RESUMO

Previous ambiguities in the conformational and structural landscape of the volatile anesthetic enflurane have been solved combining microwave spectroscopy in a jet expansion and ab initio calculations. The broadband (2-18 GHz) rotational spectra identified three different rotamers, sharing a common trans ether skeleton but differing in the ±gauche/trans position of the terminal chlorine atom. For each chlorine conformation two different gauche orientations were predicted for the opposite difluoromethyl group, but only one is experimentally observable due to collisional relaxation in the jet. The experimental dataset comprised nine different isotopologues ((35) Cl, (37) Cl, (13) C) and a large number (>6500) of rotational transitions. The inertial data provided structural information using the substitution and effective procedures. The structural preferences were rationalized with additional ab initio, natural-bond-orbital and non-covalent-interaction analysis, which suggest that plausible anomeric effects at the difluoromethyl group could be overridden by other intramolecular effects. The difluoromethyl orientation thus reflects a minimization of inter-fluorine repulsions while maximizing F⋅⋅⋅H attractive interactions. A comparison with previous electron diffraction and spectroscopic data in the gas and condensed phases finally resulted in a comprehensive description of this ether, completing a rotational description of the most common multi-halogenated anesthetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA