Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(1): 1-9, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113116

RESUMO

ConspectusReversible Mg2+ intercalation in metal oxide frameworks is a key enabler for an operational Mg-ion battery with high energy density needed for the next generation of energy storage technologies. While functional Mg-ion batteries have been achieved in structures with soft anions (e.g., S2- and Se2-), they do not meet energy density requirements to compete with the current rechargeable lithium-ion batteries due to their low insertion potentials. It emphasizes the necessity of finding an oxide-based cathode that operates at high potentials. A leading hypothesis to explain the limited availability of oxide Mg-ion cathodes is the belief that Mg2+ has sluggish diffusion kinetics in oxides due to strong electrostatic interactions between the Mg2+ ions and oxide anions in the lattice. From this assessment, it can be hypothesized that such rate limiting kinetic shortcomings can be mitigated by tailoring an oxide framework through creating less stable Mg2+-O2- coordination.Based on theoretical calculations and preliminary experimental data, oxide spinels have been identified as promising cathode candidates with storage capacity, insertion potential, and cation mobility that meet the requirements for a secondary Mg-ion battery. However, spinels with a single redox metal, such as MgCr2O4 or MgMn2O4, were not found to demonstrate sufficiently reversible Mg-ion intercalation at high redox potentials when coupled with nonaqueous Mg-electrolytes. Therefore, a materials development effort was initiated to design, synthesize, and evaluate a new class of solid-solution oxide spinels that can satisfy the required properties needed to create a sustainable Mg-ion cathode. These were designed by bringing together electrochemically active metals with stable redox potentials and charged states against the electrolyte, for instance, Mn3+, in combination with a structural stabilization component, typically Cr3+. Furthermore, common spinel structural defects that degrade performance, i.e., antisite inversion, were controlled to see correlation between structures and electrochemical overpotentials, thus controlling overall hysteresis. The designed materials were characterized by both short- and long-range structure in both ex situ and in situ modes to confirm the nature of solid-solution and to correlate structural changes and redox activity to electrochemical performance. Consistent and reproducible results were observed for facile bulk Mg2+-ion activity without phase transformations, leading to enhanced energy storage capability based on reversible intercalation of Mg2+, enabled by understanding the variables that control the electrochemical performance of the spinel oxide. Based on these observations, with proper materials design, it is possible to develop an oxide cathode material that has many of the desired properties of a Li-ion intercalation cathode, representing a significant mile marker in the quest for high energy density Mg-ion batteries.This Account describes strategies for the design and development of new spinel oxide intercalation materials for high-energy Mg-ion battery cathodes through a combination of theoretical and experimental approaches. We will review the key factors that govern the kinetics of Mg2+ diffusion in spinel oxides and illustrate how material complexity correlates with the electrochemical Mg2+ activity in oxides and is supported by secondary characterization. The understanding gained from the fundamental studies of cation diffusion in oxide cathodes will be beneficial for chemists and materials scientists who are developing rechargeable batteries.

2.
Phys Chem Chem Phys ; 26(3): 2153-2167, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131627

RESUMO

Electroanalytical measurements are routinely used to estimate material properties exhibiting current and voltage signatures. Analysis of such measurements relies on analytical expressions of material properties to describe the experiments. The need for analytical expressions limits the experiments that can be used to measure properties as well as the properties that can be estimated from a given experiment. Such analytical relations are essentially solutions of the physics-based differential equations (with properties as coefficients) describing the material behavior under certain specific conditions. In recent years, a new machine learning-based approach has been gaining popularity wherein the differential equations are numerically solved to interpret the electroanalytical experiments in terms of corresponding material properties. Since the physics-based differential equations are solved, one can additionally estimate underlying fields, e.g., concentration profile, using such an approach. To exemplify the characteristics of such a machine learning assisted interpretation of electroanalytical measurements, we use data from the Hebb-Wagner test on a magnesium spinel intercalation host. As compared to the traditional analytical expression-based interpretation, the emerging approach decreases experimental efforts to characterize relevant material properties as well as provides field information that was previously inaccessible.

3.
ACS Nano ; 17(15): 15053-15064, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37467377

RESUMO

One-dimensional (1D) materials demonstrate anisotropic in-plane physical properties that enable a wide range of functionalities in electronics, photonics, valleytronics, optoelectronics, and catalysis. Here, we undertake an in-depth study of the growth mechanism for equimolar midentropy alloy of (NbTaTi)0.33S3 nanoribbons as a model system for 1D transition metal trichalcogenide structures. To understand the thermodynamic and kinetic effects in the growth process, the energetically preferred phases at different synthesis temperatures and times are investigated, and the phase evolution is inspected at a sequence of growth steps. It is uncovered that the dynamics of the growth process occurs at four different stages via preferential incorporation of chemical species at high-surface-energy facets. Also, a sequence of temperature and time dependent nonuniform to uniform phase evolutions has emerged in the composition and structure of (NbTaTi)0.33S3 which is described based on an anisotropic vapor-solid (V-S) mechanism. Furthermore, direct evidence for the 3D structure of the charge density wave (CDW) phase (width less than 100 nm) is provided by three-dimensional electron diffraction (3DED) in individual nanoribbons at cryogenic temperature, and detailed comparisons are made between the phases obtained before and after CDW transformation. This study provides important fundamental information for the design and synthesis of future 1D alloy structures.

4.
Front Chem ; 11: 1199677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332896

RESUMO

Solid polymer and perovskite-type ceramic electrolytes have both shown promise in advancing solid-state lithium metal batteries. Despite their favorable interfacial stability against lithium metal, polymer electrolytes face issues due to their low ionic conductivity and poor mechanical strength. Highly conductive and mechanically robust ceramics, on the other hand, cannot physically remain in contact with redox-active particles that expand and contract during charge-discharge cycles unless excessive pressures are used. To overcome the disadvantages of each material, polymer-ceramic composites can be formed; however, depletion interactions will always lead to aggregation of the ceramic particles if a homopolymer above its melting temperature is used. In this study, we incorporate Li0.33La0.56TiO3 (LLTO) nanoparticles into a block copolymer, polystyrene-b-poly (ethylene oxide) (SEO), to develop a polymer-composite electrolyte (SEO-LLTO). TEMs of the same nanoparticles in polyethylene oxide (PEO) show highly aggregated particles whereas a significant fraction of the nanoparticles are dispersed within the PEO-rich lamellae of the SEO-LLTO electrolyte. We use synchrotron hard x-ray microtomography to study the cell failure and interfacial stability of SEO-LLTO in cycled lithium-lithium symmetric cells. Three-dimensional tomograms reveal the formation of large globular lithium structures in the vicinity of the LLTO aggregates. Encasing the SEO-LLTO between layers of SEO to form a "sandwich" electrolyte, we prevent direct contact of LLTO with lithium metal, which allows for the passage of seven-fold higher current densities without signatures of lithium deposition around LLTO. We posit that eliminating particle clustering and direct contact of LLTO and lithium metal through dry processing techniques is crucial to enabling composite electrolytes.

5.
J Phys Chem Lett ; 14(13): 3222-3229, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972067

RESUMO

Transition-metal dichalcogenides (TMDCs) such as MoS2 are Earth-abundant catalysts that are attractive for many chemical processes, including the carbon dioxide reduction reaction (CO2RR). While many studies have correlated synthetic preparation and architectures with macroscopic electrocatalytic performance, not much is known about the state of MoS2 under functional conditions, particularly its interactions with target molecules like CO2. Here, we combine operando Mo K- and S K-edge X-ray absorption spectroscopy (XAS) with first-principles simulations to track changes in the electronic structure of MoS2 nanosheets during CO2RR. Comparison of the simulated and measured XAS discerned the existence of Mo-CO2 binding in the active state. This state perturbs hybridized Mo 4d-S 3p states and is critically mediated by sulfur vacancies induced electrochemically. The study sheds new light on the underpinnings of the excellent performance of MoS2 in CO2RR. The electronic signatures we reveal could be a screening criterion toward further gains in activity and selectivity of TMDCs in general.

6.
Sci Bull (Beijing) ; 67(4): 381-388, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36546090

RESUMO

Coupled with anionic and cationic redox chemistry, Li-rich/excess cathode materials are prospective high-energy-density candidates for the next-generation Li-ion batteries. However, irreversible lattice oxygen loss would exacerbate irreversible transition metal migration, resulting in a drastic voltage decay and capacity degeneration. Herein, a metastable layered Li-excess cathode material, T2-type Li0.72[Li0.12Ni0.36Mn0.52]O2, was developed, in which both oxygen stacking arrangement and Li coordination environment fundamentally differ from that in conventional O3-type layered structures. By means of the reversible Li migration processes and structural evolutions, not only can voltage decay be effectively restrained, but also excellent capacity retention can be achieved upon long-term cycling. Moreover, irreversible/reversible anionic/cationic redox activities have been well assigned and quantified by various in/ex-situ spectroscopic techniques, further clarifying the charge compensation mechanism associated with (de)lithiation. These findings of the novel T2 structure with the enhanced anionic redox stability will provide a new scope for the development of high-energy-density Li-rich cathode materials.

7.
ACS Appl Energy Mater ; 5(10): 11964-11969, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36311467

RESUMO

Magnesium batteries have attracted great attention as an alternative to Li-ion batteries but still suffer from limited choice of positive electrode materials. V2O5 exhibits high theoretical capacities, but previous studies have been mostly limited to α-V2O5. Herein, we report on the ß-V2O5 polymorph as a Mg intercalation electrode. The structural changes associated with the Mg2+ (de-) intercalation were analyzed by a combination of several characterization techniques: in situ high resolution X-ray diffraction, scanning transmission electron microscopy, electron energy-loss spectroscopy, and X-ray absorption spectroscopy. The reversible capacity reached 361 mAh g-1, the highest value found at room temperature for V2O5 polymorphs.

8.
Angew Chem Int Ed Engl ; 61(40): e202207225, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35945900

RESUMO

Compared with the polycrystal (PC) Ni-rich cathode materials, the single-crystal (SC) counterpart displayed excellent structural stability, high reversible capacity and limited voltage decay during cycling, which received great attention from academics and industry. However, the origin of fascinating high-voltage stability within SC is poorly understood yet. Herein, we tracked the evolution of phase transitions, in which the destructive volume change and H3 phase formation presented in PC, are effectively suppressed in SC when cycling at a high cut-off voltage of 4.6 V, further clarifying the origin of high-voltage stability in SC cathode. Moreover, SC electrode displayed crack-free morphology, and excellent electrochemical stability during long-term cycling, whereas PC suffered severe capacity and voltage fade because of the spinel-like phase, decoding the failure mechanisms of PC and SC during cycling at high cut-off voltages. This finding provides universal insights into high-voltage stability and failure mechanisms of layered Ni-rich cathode materials.

9.
J Am Chem Soc ; 144(31): 14121-14131, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895903

RESUMO

Ion transport in solid-state cathode materials prescribes a fundamental limit to the rates batteries can operate; therefore, an accurate understanding of ion transport is a critical missing piece to enable new battery technologies, such as magnesium batteries. Based on our conventional understanding of lithium-ion materials, MgCr2O4 is a promising magnesium-ion cathode material given its high capacity, high voltage against an Mg anode, and acceptable computed diffusion barriers. Electrochemical examinations of MgCr2O4, however, reveal significant energetic limitations. Motivated by these disparate observations; herein, we examine long-range ion transport by electrically polarizing dense pellets of MgCr2O4. Our conventional understanding of ion transport in battery cathode materials, e.g., Nernst-Einstein conduction, cannot explain the measured response since it neglects frictional interactions between mobile species and their nonideal free energies. We propose an extended theory that incorporates these interactions and reduces to the Nernst-Einstein conduction under dilute conditions. This theory describes the measured response, and we report the first study of long-range ion transport behavior in MgCr2O4. We conclusively show that the Mg chemical diffusivity is comparable to lithium-ion electrode materials, whereas the total conductivity is rate-limiting. Given these differences, energy storage in MgCr2O4 is limited by particle-scale voltage drops, unlike lithium-ion particles that are limited by concentration gradients. Future materials design efforts should consider the interspecies interactions described in this extended theory, particularly with respect to multivalent-ion systems and their resultant effects on continuum transport properties.

10.
Nat Mater ; 21(10): 1165-1174, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35725928

RESUMO

Reversible anionic redox reactions represent a transformational change for creating advanced high-energy-density positive-electrode materials for lithium-ion batteries. The activation mechanism of these reactions is frequently linked to ligand-to-metal charge transfer (LMCT) processes, which have not been fully validated experimentally due to the lack of suitable model materials. Here we show that the activation of anionic redox in cation-disordered rock-salt Li1.17Ti0.58Ni0.25O2 involves a long-lived intermediate Ni3+/4+ species, which can fully evolve to Ni2+ during relaxation. Combining electrochemical analysis and spectroscopic techniques, we quantitatively identified that the reduction of this Ni3+/4+ species goes through a dynamic LMCT process (Ni3+/4+-O2- → Ni2+-On-). Our findings provide experimental validation of previous theoretical hypotheses and help to rationalize several peculiarities associated with anionic redox, such as cationic-anionic redox inversion and voltage hysteresis. This work also provides additional guidance for designing high-capacity electrodes by screening appropriate cationic species for mediating LMCT.


Assuntos
Lítio , Cátions , Eletrodos , Ligantes , Lítio/química , Oxirredução
11.
Small ; 18(4): e2102902, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35083855

RESUMO

Lithium-oxygen batteries are among the most attractive alternatives for future electrified transportation. However, their practical application is hindered by many obstacles. Due to the insulating nature of Li2 O2 product and the slow kinetics of reactions, attaining sustainable low charge overpotentials at high rates becomes a challenge resulting in the battery's early failure and low round trip efficiency. Herein, outstanding characteristics are discovered of a conductive metal organic framework (c-MOF) that promotes the growth of nanocrystalline Li2 O2 with amorphous regions. This provides a platform for the continuous growth of Li2 O2 units away from framework, enabling a fast discharge at high current rates. Moreover, the Li2 O2 structure works in synergy with the redox mediator (RM). The conductivity of the amorphous regions of the Li2 O2 allows the RM to act directly on the Li2 O2 surface instead of catalyst edges and then transport through the electrolyte to the Li2 O2 surface. This direct charge transfer enables a small charge potential of <3.7 V under high current densities (1-2 A g-1 ) sustained for a long cycle life (100-300 cycles) for large capacities (1000-2000 mAh g-1 ). These results open a new direction for utilizing c-MOFs towards advanced energy storage systems.

12.
Chem Mater ; 33(11): 3989-4005, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34276132

RESUMO

The electrochemical lithiation and delithiation of the layered oxysulfide Sr2MnO2Cu4-δS3 has been investigated by using a combination of in situ powder X-ray diffraction and ex situ neutron powder diffraction, X-ray absorption and 7Li NMR spectroscopy, together with a range of electrochemical experiments. Sr2MnO2Cu4-δS3 consists of [Sr2MnO2] perovskite-type cationic layers alternating with highly defective antifluorite-type [Cu4-δS3] (δ ≈ 0.5) anionic layers. It undergoes a combined displacement/intercalation (CDI) mechanism on reaction with Li, where the inserted Li replaces Cu, forming Li4S3 slabs and Cu+ is reduced and extruded as metallic particles. For the initial 2-3% of the first discharge process, the vacant sites in the sulfide layer are filled by Li; Cu extrusion then accompanies further insertion of Li. Mn2.5+ is reduced to Mn2+ during the first half of the discharge. The overall charging process involves the removal of Li and re-insertion of Cu into the sulfide layers with re-oxidation of Mn2+ to Mn2.5+. However, due to the different diffusivities of Li and Cu, the processes operating on charge are quite different from those operating during the first discharge: charging to 2.75 V results in the removal of most of the Li, little reinsertion of Cu, and good capacity retention. A charge to 3.75 V is required to fully reinsert Cu, which results in significant changes to the sulfide sublattice during the following discharge and poor capacity retention. This detailed structure-property investigation will promote the design of new functional electrodes with improved device performance.

13.
Sci Data ; 8(1): 153, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117266

RESUMO

The L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.

14.
Nanoscale ; 13(22): 10081-10091, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34052841

RESUMO

α-V2O5 has been extensively explored as a Mg2+ intercalation host with potential as a battery cathode, offering high theoretical capacities and potentials vs. Mg2+/Mg. However, large voltage hysteresis is observed with Mg insertion and extraction, introducing significant and unacceptable round-trip energy losses with cycling. Conventional interpretations suggest that bulk ion transport of Mg2+ within the cathode particles is the major source of this hysteresis. Herein, we demonstrate that nanosizing α-V2O5 gives a measurable reduction to voltage hysteresis on the first cycle that substantially raises energy efficiency, indicating that mechanical formatting of the α-V2O5 particles contributes to hysteresis. However, no measurable improvement in hysteresis is found in the nanosized α-V2O5 in latter cycles despite the much shorter diffusion lengths, suggesting that other factors aside from Mg transport, such as Mg transfer between the electrolyte and electrode, contribute to this hysteresis. This observation is in sharp contrast to the conventional interpretation of Mg electrochemistry. Therefore, this study uncovers critical fundamental underpinning limiting factors in Mg battery electrochemistry, and constitutes a pivotal step towards a high-voltage, high-capacity electrode material suitable for Mg batteries with high energy density.

15.
Adv Mater ; 33(10): e2004393, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33522009

RESUMO

Metal-organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)-based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2 reduction reaction (CO2 RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm-2 at -0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s-1 . In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state-of-the-art MOF and MOF-derived catalysts, respectively. The operando Cu K-edge X-ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+ ) during CO2 RR which reversibly returns to Cu2+ after the reaction. The outstanding CO2 catalytic functionality of conductive MOFs (c-MOFs) can open a way toward high-energy-density electrochemical systems.

16.
Nat Mater ; 20(3): 353-361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432141

RESUMO

Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g-1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.

17.
Adv Mater ; 33(2): e2004280, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33270286

RESUMO

Li-rich cathode materials are of significant interest for coupling anionic redox with cationic redox chemistry to achieve high-energy-density batteries. However, lattice oxygen loss and derived structure distortion would induce serious capacity loss and voltage decay, further hindering its practical application. Herein, a novel Li-rich cathode material, O3-type Li0.6 [Li0.2 Mn0.8 ]O2 , is developed with the pristine state displaying both a Li excess in the transition metal layer and a deficiency in the alkali metal layer. Benefiting from stable structure evolution and Li migration processes, not only can high reversible capacity (≈329 mAh g-1 ) be harvested but also irreversible/reversible anionic/cationic redox reactions are comprehensively assigned via the combination of in/ex situ spectroscopies. Furthermore, irreversible lattice oxygen loss and structure distortion are effectively restrained, resulting in long-term cycle stability (capacity drop of 0.045% per cycle, 500 cycles). Altogether, tuning the Li state in the alkali metal layer presents a promising way for modification of high-capacity Li-rich cathode candidates.

18.
Nanoscale ; 12(43): 22150-22160, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135020

RESUMO

V2O5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V2O5) and in its metastable tunnel structure (ζ-V2O5). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized (ca. 100 nm) ζ-V2O5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V2O5. This effect results in a significant boost in stable discharge capacity (130 mA h g-1) compared to bulk ζ-V2O5 (70 mA h g-1), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V2O5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases.

19.
Inorg Chem ; 59(16): 11244-11247, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799478

RESUMO

Prior calculations have predicted that chalcohalide antiperovskites may exhibit enhanced ionic mobility compared to oxyhalide antiperovskites as solid-state electrolytes. Here, the synthesis of Ag-, Li-, and Na-based chalcohalide antiperovskites is investigated using first-principles calculations and in situ synchrotron X-ray diffraction. These techniques demonstrate that the formation of Ag3SI is facilitated by the adoption of a common body centered cubic packing of S2- and I- in the reactants and products at elevated temperatures, with additional stabilization achieved by the formation of a solid solution of the anions. The absence of these two features appears to hinder the formation of the analogous Li and Na antiperovskites.

20.
ACS Appl Mater Interfaces ; 12(34): 38249-38255, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32803951

RESUMO

The emergence of anionic redox has recently garnered intense interest for lithium/sodium-ion batteries because of the increasing specific capacities of cathodes, which is considered as a transformative approach for designing cathode materials. Nevertheless, the widespread use of such oxygen-related anionic redox is still precluded because of the oxygen release and the correlated irreversible structural transformations and voltage fade. To fundamentally unravel the related mechanism, we have investigated the corresponding anionic redox process based on a new P3-type layered material Na0.5Mg0.15Al0.2Mn0.65O2. Here, we prove an excellent structural stability via the operando/ex situ structural evolution within this cathode and further elucidate the complete anionic/cationic redox activity via both surface-sensitive (X-ray photoelectron spectroscopy) and bulk-sensitive (X-ray absorption spectroscopy) spectroscopies. Moreover, based on the characterization of the ex situ state to the operando evolution for the whole anionic redox process by Raman and differential electrochemical mass spectrometry, the nature of the reversible oxygen redox chemistry is clarified. Meanwhile, the origin of a small portion irreversible oxygen release generated upon the first charging and its resulting impact on subsequent processes are also fully illuminated. These insights provide guidelines for future designing of anionic redox-based high-energy-density cathodes in lithium/sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA