Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(32): 42198-42209, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39091093

RESUMO

Rare-earth doped CeO2 materials find extensive application in high-temperature energy conversion devices such as solid oxide fuel cells and electrolyzers. However, understanding the complex relationship between structural and electrical properties, particularly concerning rare-earth ionic size and content, remains a subject of ongoing debate, with conflicting published results. In this study, we have conducted comprehensive long-range and local order structural characterization of Ce1-xLnxO2-x/2 samples (x ≤ 0.6; Ln = La, Nd, Sm, Gd, and Yb) using X-ray and neutron powder diffraction, Raman spectroscopy, and electron diffraction. The increase in the rare-earth dopant content leads to a progressive phase transformation from a disordered fluorite structure to a C-type ordered superstructure, accompanied by reduced ionic conductivity. Samples with low dopant content (x = 0.2) exhibit higher ionic conductivity in Gd3+ and Sm3+ series due to lower lattice cell distortion. Conversely, highly doped samples (x = 0.6) exhibit superior conductivity for larger rare-earth dopant cations. Thermogravimetric analysis confirms increased water uptake and proton conductivity with increasing dopant concentration, while the electronic conductivity remains relatively unaffected, resulting in reduced ionic transport numbers. These findings offer insights into the relationship between transport properties and defect-induced local distortions in rare-earth doped CeO2, suggesting the potential for developing new functional materials with mixed ionic oxide, proton, and electronic conductivity for high-temperature energy systems.

2.
Materials (Basel) ; 15(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35207833

RESUMO

We review the progress in metal phosphate structural chemistry focused on proton conductivity properties and applications. Attention is paid to structure-property relationships, which ultimately determine the potential use of metal phosphates and derivatives in devices relying on proton conduction. The origin of their conducting properties, including both intrinsic and extrinsic conductivity, is rationalized in terms of distinctive structural features and the presence of specific proton carriers or the factors involved in the formation of extended hydrogen-bond networks. To make the exposition of this large class of proton conductor materials more comprehensive, we group/combine metal phosphates by their metal oxidation state, starting with metal (IV) phosphates and pyrophosphates, considering historical rationales and taking into account the accumulated body of knowledge of these compounds. We highlight the main characteristics of super protonic CsH2PO4, its applicability, as well as the affordance of its composite derivatives. We finish by discussing relevant structure-conducting property correlations for divalent and trivalent metal phosphates. Overall, emphasis is placed on materials exhibiting outstanding properties for applications as electrolyte components or single electrolytes in Polymer Electrolyte Membrane Fuel Cells and Intermediate Temperature Fuel Cells.

3.
ACS Appl Mater Interfaces ; 14(9): 11273-11287, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192337

RESUMO

This work deals with the synthesis and characterization of one-dimensional (1D) imidazole-containing etidronates, [M2(ETID)(Im)3]·nH2O (M = Co2+ and Ni2+; n = 0, 1, 3) and [Zn2(ETID)2(H2O)2](Im)2, as well as the corresponding Co2+/Ni2+ solid solutions, to evaluate their properties as multipurpose materials for energy conversion processes. Depending on the water content, metal ions in the isostructural Co2+ and Ni2+ derivatives are octahedrally coordinated (n = 3) or consist of octahedral together with dimeric trigonal bipyramidal (n = 1) or square pyramidal (n = 0) environments. The imidazole molecule acts as a ligand (Co2+, Ni2+ derivatives) or charge-compensating protonated species (Zn2+ derivative). For the latter, the proton conductivity is determined to be ∼6 × 10-4 S·cm-1 at 80 °C and 95% relative humidity (RH). By pyrolyzing in 5%H2-Ar at 700-850 °C, core-shell electrocatalysts consisting of Co2+-, Ni2+-phosphides or Co2+/Ni2+-phosphide solid solution particles embedded in a N-doped carbon graphitic matrix are obtained, which exhibit improved catalytic performances compared to the non-N-doped carbon materials. Co2+ phosphides consist of CoP and Co2P in variable proportions according to the used precursor and pyrolytic conditions. However, the Ni2+ phosphide is composed of Ni2P exclusively at high temperatures. Exploration of the electrochemical activity of these metal phosphides toward the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) reveals that the anhydrous Co2(ETID)(Im)3 pyrolyzed at 800 °C (CoP/Co2P = 80/20 wt %) is the most active trifunctional electrocatalyst, with good integrated capabilities as an anode for overall water splitting (cell voltage of 1.61 V) and potential application in Zn-air batteries. This solid also displays a moderate activity for the HER with an overpotential of 156 mV and a Tafel slope of 79.7 mV·dec-1 in 0.5 M H2SO4. Ni2+- and Co2+/Ni2+-phosphide solid solutions show lower electrochemical performances, which are correlated with the formation of less active crystalline phases.

4.
Dalton Trans ; 50(22): 7667-7677, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33977991

RESUMO

Although the fibrous polymorphic modification of titanium phosphate, π-Ti2O(PO4)2·2H2O (π-TiP) has been known for decades, its crystal structure has remained unsolved. Herewith, we report the crystal structure of π-TiP at room temperature, as determined from synchrotron radiation powder X-ray diffraction, and corroborated by 31P solid state NMR and accurate density functional theory calculations. In contrast to the previously reported ρ-TiP polymorph, the as-synthesized hydrated phase crystallizes in the monoclinic system (P21/c, a = 5.1121(2) Å, b = 14.4921(9) Å, c = 12.0450(11), ß = 115.31(1)°, Z = 4), and is composed of corner-sharing titanium octahedra and phosphate units arranged in a pattern that is unique to the ρ-TiP polymorph. The unit cell was confirmed by electron diffraction, while the formation of planar packing imperfections and stacking faults along the [101] plane was revealed by HRTEM analysis. An in situ dehydration study of π-TiP, monitored by high-temperature powder X-ray diffraction, led to a new anhydrous monoclinic (P21/c, a = 5.1187(13) Å, b = 11.0600(21) Å, c = 14.4556(26), ß = 107.65(2)°, Z = 4) phase that crystallizes at 500 °C. The latter resembles the packing fashion of the parental π-TiP, albeit titanium atoms are present in both distorted tetrahedral and octahedral coordination environments. Anhydrous π-TiP was found to partially rehydrate at room temperature, reversibly adopting the structure of the initial phase. The studies carried out under different conditions of leaching and impregnation with H3PO4 showed that π-TiP exhibits an extrinsic proton conductivity (1.3 × 10-3 S cm-1 at 90 °C and 95% RH) due to the presence of the protonated phosphate species bound on the particles surface, as revealed by 31P MAS-NMR spectroscopy data. The composite membranes of Chitosan (CS) matrices filled with H3PO4-impregnated π-TiP solid show an increment of proton conductivity up to 4.5 × 10-3 S cm-1, at 80 °C and 95% RH, which is 1.8-fold higher than those of the bare CS membranes.

5.
ACS Appl Mater Interfaces ; 13(13): 15279-15291, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764728

RESUMO

Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln3+) with nitrilo-tris(methylenephosphonic acid) (H6NMP) in the presence of sulfate ions. Two families of materials are isolated and structurally characterized, i.e., [Ln2(H4NMP)2(H2O)4](HSO4)2·nH2O (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb; n = 4-5, Series I) and [Ln(H5NMP)]SO4·2H2O (Ln = Pr, Nd, Eu, Gd, Tb; Series II). Eu/Tb bimetallic solid solutions are also prepared for photoluminescence studies. Members of families I and II display high proton conductivity (10-3 and 10-2 S·cm-1 at 80 °C and 95% relative humidity) and are studied as fillers for Nafion-based composite membranes in PEMFCs, under operating conditions. Composite membranes exhibit higher power and current densities than the pristine Nafion membrane working in the range of 70-90 °C and 100% relative humidity and with similar proton conductivity.

6.
Dalton Trans ; 49(13): 3981-3988, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31942881

RESUMO

Synthesis redesign and derivatisation of Fe(ii)-hydroxyphosphonoacetate, incorporating different ammonia loads and M(ii) isomorphic substitutions (M = Mn, Co and Zn), have been implemented. The NH3 adsorption led to materials with enhanced proton conductivity, up to ∼10-3 S cm-1, although it caused a progressive amorphization. The Pair Distribution Function (PDF) analysis for this material confirmed the loss of crystallinity but the local order appeared to be maintained. The parent compound was shown to be an efficient photocatalyst for phenol, 4-chlorophenol and methylene blue even under mild conditions, with TOC removal of 75-90% at 50-150 min of reaction. The M(ii)-substituted derivatives displayed similar behaviour in properties, and therefore their multifunctional character, as the parent compound, although with slightly reduced capabilities.

7.
Inorg Chem ; 58(17): 11522-11533, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31403791

RESUMO

The reaction of MoO42- with a number of phosphonic acids [bis(phosphonomethyl)glycine, R,S-hydroxyphosphonoacetic acid, 1-hydroxyethane-1,1-diphosphonic acid, phenylphosphonic acid, aminotris(methylene phosphonic acid), and 1,2-ethylenediphosphonic acid] under oxidizing (H2O2) hydrothermal conditions at low pH leads to rupture of the P-C bond, release of orthophosphate ions, and generation of the octanuclear, phosphate-bridged, polyoxometalate molybdenum cluster (NH4)5[Mo8(OH)2O24(µ8-PO4)](H2O)2 (POMPhos). This cluster has been fully characterized and its structure determined. It was studied as a proton conductor, giving moderate values of σ = 2.13 × 10-5 S·cm-1 (25 °C) and 1.17 × 10-4 S·cm-1 (80 °C) at 95% relative humidity, with Ea = 0.27 eV. The POMPhos cluster was then thermally treated at 310 °C, yielding (NH4)2.6(H3O)0.4(PO4Mo12O36) together with an amorphous impurity containing phosphate and molybdenum oxide. This product was also studied for its proton conductivity properties, giving rise to an impressively high value of σ = 2.43 × 10-3 S·cm-1 (25 °C) and 6.67 × 10-3 S·cm-1 (80 °C) at 95% relative humidity, 2 orders of magnitude higher than those corresponding to the "as-synthesized" solid. The utilization of POMPhos in catalytic reduction of different sulfoxides was also evaluated. POMPhos acts as an efficient homogeneous catalyst for the reduction of diphenyl sulfoxide to diphenyl sulfide, as a model reaction. Pinacol was used as a low-cost, environmentally friendly, and highly efficient reducing agent. The effects of different reaction parameters were investigated, namely the type of solvent and reducing agent, presence of acid promoter, reaction time and temperature, loading of catalyst and pinacol, allowing to achieve up to 84-99% yields of sulfide products under optimized conditions. Substrate scope was tested on the examples of diaryl, alkylaryl, dibenzyl, and dialkyl sulfoxides and excellent product yields were obtained.

8.
Inorg Chem ; 58(14): 9368-9377, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247821

RESUMO

La-doped CeO2 materials have been widely investigated for potential applications in different high-temperature electrochemical devices, such as fuel cells and ceramic membranes for hydrogen production. However, the crystal structure is still controversial, and different models based on fluorite, pyrochlore, and/or type-C structures have been considered, depending on the lanthanum content and synthesis method used. In this work, an exhaustive structural analysis of the Ce1-xLaxO2-x/2 system (0.2 < x ≤ 0.7) is performed with different techniques. The average crystal structure, studied by conventional X-ray diffraction, could be considered to be a disordered fluorite; however, the local structure, examined by electron diffraction and Raman spectroscopy, reveals a biphasic mixture of fluorite and C-type phases. The thermal and electrical properties demonstrate that the materials with x ≥ 0.4 are oxide ion proton conductors in an oxidizing atmosphere and mixed ionic electronic conductors in a reducing atmosphere. The water uptake and proton conductivity increase gradually with the increase in La content, suggesting that the formation of the C-type phase is responsible for the proton conduction in these materials.

9.
Angew Chem Int Ed Engl ; 57(47): 15420-15424, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30226289

RESUMO

Herein, we exploit the well-known swelling behaviour of metal-organic frameworks (MOFs) to create a self-folding polymer film. Namely, we show that incorporating crystals of the flexible MOF MIL-88A into a polyvinylidene difluoride (PVDF) matrix affords a polymer composite film that undergoes reversible shape transformations upon exposure to polar solvents and vapours. Since the self-folding properties of this film correlate directly with the swelling properties of the MIL-88A crystals, it selectively bends to certain solvents and its degree of folding can be controlled by controlling the relative humidity. Moreover, it shows a shape-memory effect at relative humidity values from 60 % to 90 %. As proof of concept, we demonstrate that these composite films can lift cargo and can be used to assemble 3D structures from 2D patterns. Our strategy is a straightforward method for designing autonomous soft materials with folding properties that can be tuned by judicious choice of the constituent flexible MOF.

10.
Inorg Chem ; 57(17): 10656-10666, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30102028

RESUMO

The synthesis, structural characterization, topological analysis, proton conductivity, and catalytic properties are reported of two Cu(II)-based compounds, namely a dinuclear Cu(II) complex [Cu2(µ-VPA)2(phen)2(H2O)2]·8H2O (1) (H2VPA = vinylphosphonic acid, phen = 1,10-phenanthroline) and a 1D coordination polymer [Cu(µ-SO4)(phen)(H2O)2]∞ (2). Their structural features and H-bonding interactions were investigated in detail, showing that the metal-organic structures of 1 and 2 are extended by multiple hydrogen bonds to more complex 2D or 1D H-bonded architectures with the kgd [Shubnikov plane net (3.6.3.6)/dual] and SP 1-periodic net (4,4)(0,2) topology, respectively. These nets are primarily driven by the H-bonding interactions involving water ligands and H2O molecules of crystallization; besides, the (H2O)4/(H2O)5 clusters were identified in 1. Both 1 and 2 are moderate proton conductors, with proton conductivity values, σ = 3.65 × 10-6 and 3.94 × 10-6 S·cm-1, respectively (measured at 80 °C and 95% relative humidity). Compounds 1 and 2 are also efficient homogeneous catalysts for the mild oxidative functionalization of C5-C8 cycloalkanes (cyclopentane, cyclohexane, cycloheptane, and cyclooctane), namely for the oxidation by H2O2 to give cyclic alcohols and ketones and the hydrocarboxylation by CO/H2O and S2O82- to the corresponding cycloalkanecarboxylic acids as major products. The catalytic reactions proceed under mild conditions (50-60 °C) in aqueous acetonitrile medium, resulting in up to 34% product yields based on cycloalkane substrate.

11.
Inorg Chem ; 56(22): 13865-13877, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29090920

RESUMO

The syntheses, structures, magnetic, and proton conductivity properties of a family of bimetallic anilate-based compounds with inserted alkylammonium cations are presented. The structures of (Me2NH2)[MnIICrIII(Br2An)3]·2H2O (1), (Et2NH2)[MnIICrIII(Br2An)3] (2), (Et3NH)[MnIICrIII(Cl2An)3] (3), and [(Et)(i-Pr)2NH][MnIICrIII(Br2An)3]·(CHCl3)0.5·(H2O) (4) contain a 2D anionic network formed by Mn(II) and Cr(III) ions linked through anilate ligands. In 1, 2, and 3, the hexagonal holes of this network are occupied by Me2NH2+, Et2NH2+, or Et3NH+ cations. Interestingly, the small increase of size of the templating cation in 4 ([(Et)(i-Pr)2NH]+ in the place of Me2NH2+, Et2NH2+ or Et3NH+), gives rise to a different structure with half of the cations placed within the layers and the other one in the space between the layers. This leads to bilayers with an interlayer separation similar to those of 1, 2, and 3 separated by larger interbilayer distances. Compounds 1, 2, and 3 show a ferrimagnetic ordering with a Tc of 8.0 K (1), 8.9 K (2), and 8.0 K (3). In 4, the presence of different interlayer distances leads to a metamagnetic behavior when the sample is measured in contact with the mother liquor. The behavior changes in the dry sample, which shows a ferrimagnetic ordering as that of 1, 2, and 3 due to collapse of the structure as confirmed by powder X-ray diffraction. Interestingly, the metamagnetic behavior is recovered after reimmersing the crystals in the mother liquor proving the reversibility of the process. All solids are Grotthuss-type proton conductors with conductivity values ranging between 2.3 × 10-6 S·cm-1 for 3 and 2.4 × 10-5 S·cm-1 for 1 measured at 70 °C and 95% relative humidity and activation energies of ∼0.2 eV.

12.
Inorg Chem ; 55(15): 7414-24, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27416056

RESUMO

The synthesis, structural characterization, luminescence properties, and proton conduction performance of a new family of isostructural cationic 2D layered compounds are reported. These have the general formula [Ln(H4NMP)(H2O)2]Cl·2H2O [Ln = La(3+), Pr(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), H6NMP = nitrilotris(methylphosphonic acid)], and contain Cl(-) as the counterion. In the case of Ce(3+), a 1D derivative, [Ce2(H3NMP)2(H2O)4]·4.5H2O, isostructural with the known lanthanum compound has been isolated by simply crystallization at room temperature. The octa-coordinated environment of Ln(3+) in 2D compounds is composed by six oxygen atoms from three different ligands and two oxygens from each bound water. Two of the three phosphonate groups act as both chelating and bridging linkers, while the third phosphonate group acts solely as a bridging moiety. The materials are stable at low relative humidity at less at 170 °C. However, at high relative humidity transform to other chloride-free phases, including the 1D structure. The proton conductivity of the 1D materials varies in a wide range, the highest values corresponding to the La derivative (σ ≈ 2 × 10(-3) S·cm(-1) at RH 95% and 80 °C). A lower proton conductivity, 3 × 10(-4) S·cm(-1), was measured for [Gd(H4NMP)(H2O)2]Cl·2H2O at 80 °C, which remains stable under the work conditions used. Absorption and luminescence spectra were recorded for selected [Ln(H4NMP)(H2O)2]Cl·2H2O compounds. In all of them, the observed transitions are attributed solely to f-f transitions of the lanthanide ions present, as the H4NMP(2-) organic group has no measurable absorption or luminescence properties.

13.
Chem Commun (Camb) ; 52(45): 7229-32, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27228426

RESUMO

Herein we report a study on water adsorption/desorption-triggered single-crystal to single-crystal transformations in a MOF, by single-crystal and humidity-controlled powder X-ray diffraction and water-sorption measurements. We identified a gate-opening effect at a relative humidity of 85% upon water adsorption, and a gate-closure effect at a relative humidity of 55 to 77% upon water desorption. This reversible breathing effect between the "open" and the "closed" structures of the MOF involves the cleavage and formation of several coordination bonds.

14.
J Am Chem Soc ; 136(15): 5731-9, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24641594

RESUMO

We report the synthesis, structural characterization, and functionality (framework interconversions together with proton conductivity) of an open-framework hybrid that combines Ca(2+) ions and the rigid polyfunctional ligand 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA). Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]·5H2O (Ca-PiPhtA-I) is obtained by slow crystallization at ambient conditions from acidic (pH ≈ 3) aqueous solutions. It possesses a high water content (both Ca coordinated and in the lattice), and importantly, it exhibits water-filled 1D channels. At 75 °C, Ca-PiPhtA-I is partially dehydrated and exhibits a crystalline diffraction pattern that can be indexed in a monoclinic cell with parameters close to the pristine phase. Rietveld refinement was carried out for the sample heated at 75 °C, Ca-PiPhtA-II, using synchrotron powder X-ray diffraction data, which revealed the molecular formula Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]. All connectivity modes of the "parent" Ca-PiPhtA-I framework are retained in Ca-PiPhtA-II. Upon Ca-PiPhtA-I exposure to ammonia vapors (28% aqueous NH3) a new derivative is obtained (Ca-PiPhtA-NH3) containing 7 NH3 and 16 H2O molecules according to elemental and thermal analyses. Ca-PiPhtA-NH3 exhibits a complex X-ray diffraction pattern with peaks at 15.3 and 13.0 Å that suggest partial breaking and transformation of the parent pillared structure. Although detailed structural identification of Ca-PiPhtA-NH3 was not possible, due in part to nonequilibrium adsorption conditions and the lack of crystallinity, FT-IR spectra and DTA-TG analysis indicate profound structural changes compared to the pristine Ca-PiPhtA-I. At 98% RH and T = 24 °C, proton conductivity, σ, for Ca-PiPhtA-I is 5.7 × 10(-4) S·cm(-1). It increases to 1.3 × 10(-3) S·cm(-1) upon activation by preheating the sample at 40 °C for 2 h followed by water equilibration at room temperature under controlled conditions. Ca-PiPhtA-NH3 exhibits the highest proton conductivity, 6.6 × 10(-3) S·cm(-1), measured at 98% RH and T = 24 °C. Activation energies (Ea) for proton transfer in the above-mentioned frameworks range between 0.23 and 0.4 eV, typical of a Grothuss mechanism of proton conduction. These results underline the importance of internal H-bonding networks that, in turn, determine conductivity properties of hybrid materials. It is highlighted that new proton transfer pathways may be created by means of cavity "derivatization" with selected guest molecules resulting in improved proton conductivity.


Assuntos
Fosfatos de Cálcio/química , Cristalização , Cristalografia por Raios X , Prótons , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Inorg Chem ; 52(15): 8770-83, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23883426

RESUMO

Two new families of divalent metal hybrid derivatives from the aromatic tetraphosphonic acids 1,4- and 1,3-bis(aminomethyl)benzene-N,N'-bis(methylenephosphonic acid), (H2O3PCH2)2-N-CH2C6H4CH2-N(CH2PO3H2)2 (designated herein as p-H8L and m-H8L) have been synthesized by crystallization at room temperature and hydrothermal conditions. The crystal structures of M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2(H2O)2]·2H2O (M = Mg, Co, and Zn), M-(p-H6L), and M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2]·nH2O (M = Ca, Mg, Co, and Zn and n = 1-1.5), M-(m-H6L), were solved ab initio by synchrotron powder diffraction data using the direct methods and subsequently refined using the Rietveld method. The crystal structure of the isostructural M-(p-H6L) is constituted by organic-inorganic monodimensional chains where the phosphonate moiety acts as a bidentate chelating ligand bridging two metal octahedra. M-(m-H6L) compounds exhibit a 3D pillared open-framework with small 1D channels filled with water molecules. These channels are formed by the pillaring action of the organic ligand connecting adjacent layers through the phosphonate oxygens. Thermogravimetric and X-ray thermodiffraction analyses of M-(p-H6L) showed that the integrity of their crystalline structures is maintained up to 470 K, without significant reduction of water content, while thermal decomposition takes place above 580 K. The utility of M-(p-H6L) (M = Mg and Zn) hybrid materials in corrosion protection was investigated in acidic aqueous solutions. In addition, the impedance data indicate both families of compounds display similar proton conductivities (σ ∼ 9.4 × 10(-5) S·cm(-1), at 98% RH and 297 K), although different proton transfer mechanisms are involved.

16.
Inorg Chem ; 51(14): 7889-96, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22746972

RESUMO

In this paper we report the synthesis and structural characterization of the 2D layered coordination polymer Mg(BPMGLY)(H(2)O)(2) (BPMGLY = bis-phosphonomethylglycine, (HO(3)PCH(2))(2)N(H)COO(2-)). The Mg ion is found in a slightly distorted octahedral environment formed by four phosphonate oxygens and two water molecules. The carboxylate group is deprotonated but noncoordinated. This compound is a useful starting material for a number of topotactic transformations. Upon heating at 140 °C one (of the two) Mg-coordinated water molecule is lost, with the archetype 2D structure maintaining itself. However, the octahedral Mg in Mg(BPMGLY)(H(2)O)(2) is now converted to trigonal bipyramidal in Mg(BPMGLY)(H(2)O). Upon exposure of the monohydrate Mg(BPMGLY)(H(2)O) compound to ammonia, one molecule of ammonia is inserted into the interlayer space and stabilized by hydrogen bonding. The 2D layered structure of the product Mg(BPMGLY)(H(2)O)(NH(3)) is still maintained, with Mg now acquiring a pseudo-octahedral environment. All of these topotactic transformations are also accompanied by changes in hydrogen bonding between the layers.


Assuntos
Amônia/química , Glicina/química , Magnésio/química , Compostos Organometálicos/química , Cristalografia por Raios X , Glicina/análogos & derivados , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química
17.
Inorg Chem ; 51(14): 7689-98, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22757640

RESUMO

Multifunctional materials, especially those combining two or more properties of interest, are attracting immense attention due to their potential applications. MOFs, metal organic frameworks, can be regarded as multifunctional materials if they show another useful property in addition to the adsorption behavior. Here, we report a new multifunctional light hybrid, MgH(6)ODTMP·2H(2)O(DMF)(0.5) (1), which has been synthesized using the tetraphosphonic acid H(8)ODTMP, octamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid), by high-throughput methodology. Its crystal structure, solved by Patterson-function direct methods from synchrotron powder X-ray diffraction, was characterized by a 3D pillared open framework containing cross-linked 1D channels filled with water and DMF. Upon H(2)O and DMF removal and subsequent rehydration, MgH(6)ODTMP·2H(2)O (2) and MgH(6)ODTMP·6H(2)O (3) can be formed. These processes take place through crystalline-quasi-amorphous-crystalline transformations, during which the integrity of the framework is maintained. A water adsorption study, at constant temperature, showed that this magnesium tetraphosphonate hybrid reversibly equilibrates its lattice water content as a function of the water partial pressure. Combination of the structural study and gas adsorption characterization (N(2), CO(2), and CH(4)) indicates an ultramicroporous framework. High-pressure CO(2) adsorption data are also reported. Finally, impedance data indicates that 3 has high proton conductivity σ = 1.6 × 10(-3) S cm(-1) at T = 292 K at ~100% relative humidity with an activation energy of 0.31 eV.


Assuntos
Reagentes de Ligações Cruzadas/química , Magnésio/química , Compostos Organometálicos/química , Ácidos Fosforosos/química , Prótons , Condutividade Elétrica , Modelos Moleculares , Compostos Organometálicos/síntese química , Porosidade , Difração de Pó , Propriedades de Superfície , Temperatura
18.
Dalton Trans ; 41(14): 4045-51, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22278089

RESUMO

A new flexible ultramicroporous solid, La(H(5)DTMP)·7H(2)O (1), has been crystallized at room temperature using the tetraphosphonic acid H(8)DTMP, hexamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid). Its crystal structure, solved by synchrotron powder X-ray diffraction, is characterised by a 3D pillared open-framework containing 1D channels filled with water. Upon dehydration, a new related crystalline phase, La(H(5)DTMP) (2) is formed. Partial rehydration of 2 led to La(H(5)DTMP)·2H(2)O (3). These new phases contain highly corrugated layers showing different degrees of conformational flexibility of the long organic chain. The combination of the structural study and the gas adsorption characterization (N(2) and CO(2)) suggests an ultramicroporous flexible framework. NO isotherms are indicative of a strong irreversible adsorption of NO within the pores. Impedance data indicates that 1 is a proton-conductor with a conductivity of 8 × 10(-3) S cm(-1) at 297 K and 98% of relative humidity, and an activation energy of 0.25 eV.

19.
Inorg Chem ; 50(21): 11202-11, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21951129

RESUMO

A family of M-VP (M = Ni, Co, Cd, Mn, Zn, Fe, Cu, Pb; VP = vinylphosphonate) and M-PVP (M = Co, Cd; PVP = phenylvinylphosphonate) materials have been synthesized by hydrothermal methods and characterized by FT-IR, elemental analysis, and thermogravimetric analysis (TGA). Their structures were determined either by single crystal X-ray crystallography or from laboratory X-ray powder diffraction data. The crystal structure of some M-VP and M-PVP materials is two-dimensional (2D) layered, with the organic groups (vinyl or phenylvinyl) protruding into the interlamellar space. However, the Pb-VP and Cu-VP materials show dramatically different structural features. The porous, three-dimensional (3D) structure of Pb-VP contains the Pb center in a pentagonal pyramid. A Cu-VP variant of the common 2D layered structure shows a very peculiar structure. The structure of the material is 2D with the layers based upon three crystallographically distinct Cu atoms; an octahedrally coordinated Cu(2+) atom, a square planar Cu(2+) atom and a Cu(+) atom. The latter has an unusual co-ordination environment as it is 3-coordinated to two oxygen atoms with the third bond across the double bond of the vinyl group. Metal-coordinated water loss was studied by TGA and thermodiffractometry. The rehydration of the anhydrous phases to give the initial phase takes place rapidly for Cd-PVP but it takes several days for Co-PVP. The M-VP materials exhibit variable dehydration-rehydration behavior, with most of them losing crystallinity during the process.

20.
Inorg Chem ; 49(2): 761-8, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20014797

RESUMO

Reactions of divalent cations (Mg(2+), Co(2+), Ni(2+), and Zn(2+)) with R,S-hydroxyphosphonoacetic acid (HPAA) in aqueous solutions (pH values ranging 1.0-4.0) yielded a range of crystalline hydrated M-HPAA hybrids. One-dimensional (1D) chain compounds were formed at room temperature whereas reactions conducted under hydrothermal conditions resulted in two-dimensional (2D) layered frameworks or, in some cases, three-dimensional (3D) networks incorporating various alkaline cations. 1D phases with compositions [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)].2H(2)O (M = Mg, Co, and Zn) were isolated. These compounds were dehydrated in liquid water to yield the corresponding [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] compounds lacking the lattice water between the 1D chains. [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] (M = Mg, Ni, Co, Zn) compounds were formed by crystallization at room temperature (at higher pH values) or also by partial dehydration of 1D compounds with higher hydration degrees. Complete dehydration of these 1D solids at 240-270 degrees C led to 3D phases, [M{HO3PCH(OH)CO(2)}]. The 2D layered compound [Mg{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] was obtained under hydrothermal conditions. For both synthesis methods, addition of alkali metal hydroxides to adjust the pH usually led to mixed phase materials, whereas direct reactions between the metal oxides and the hydroxyphosphonoacetic acid gave single phase materials. On the other hand, adjusting the pH with acetate salts and increasing the ratio M(2+)/HPAA and/or the A(+)/M(2+) ratio (A = Na, K) resulted in 3D networks, where the alkali cations were incorporated within the frameworks for charge compensation. The crystal structures of eight new M(II)-HPAA hybrids are reported herein and the thermal behavior related to dehydration/rehydration of some compounds are studied in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA