Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BME Front ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35928598

RESUMO

Large aperture ultrasonic arrays can be implemented by tiling together multiple pretested modules of high-density acoustic arrays with closely integrated multiplexing and buffering electronics to form a larger aperture with high yield. These modular arrays can be used to implement large 1.75D array apertures capable of focusing in elevation for uniform slice thickness along the axial direction which can improve image contrast. An important goal for large array tiling is obtaining high yield and sensitivity while reducing extraneous image artifacts. We have been developing tileable acoustic-electric modules for the implementation of large array apertures utilizing Application Specific Integrated Circuits (ASICs) implemented using 0.35 µ m high voltage (50 V) CMOS. Multiple generations of ASICs have been designed and tested. The ASICs were integrated with high-density transducer arrays for acoustic testing and imaging. The modules were further interfaced to a Verasonics Vantage imaging system and were used to image industry standard ultrasound phantoms. The first-generation modules comprise ASICs with both multiplexing and buffering electronics on-chip and have demonstrated a switching artifact which was visible in the images. A second-generation ASIC design incorporates low switching injection circuits which effectively mitigate the artifacts observed with the first-generation devices. Here, we present the architecture of the two ASIC designs and module types as well imaging results that demonstrate reduction in switching artifacts for the second-generation devices.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31567082

RESUMO

Tiled modular 2-D ultrasound arrays have the potential for realizing large apertures for novel diagnostic applications. This work presents an architecture for fabrication of tileable 2-D array modules implemented using 1-3 composites of high-bandwidth (BW) PIN-PMN-PT single-crystal piezoelectric material closely coupled with high-voltage CMOS application-specific integrated circuit (ASIC) electronics for buffering and multiplexing functions. The module, which is designed to be operated as a λ -pitch 1.75-D array, benefits from an improved electromechanical coupling coefficient and increased Curie temperature and is assembled directly on top of the ASIC silicon substrate using an interposer backing. The interposer consists of a novel 3-D printed acrylic frame that is filled with conducting and acoustically absorbing silver epoxy material. The ASIC comprises a high-voltage switching matrix with locally integrated buffering and is interfaced to a Verasonics Vantage 128, using a local field programmable gate array (FPGA) controller. Multiple prototype 5 ×6 element array modules have been fabricated by this process. The combined acoustic array and ASIC module was configured electronically by programming the switches to operate as a 1-D array with elements grouped in elevation for imaging and pulse-echo testing. The resulting array configuration had an average center frequency of 4.55 MHz, azimuthal element pitch of [Formula: see text], and exhibited average -20-dB pulsewidth of 592 ns and average -6-dB fractional BW of 77%.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30908207

RESUMO

This paper describes the development of a miniaturized 15-MHz side-looking phased-array transducer catheter. The array features a 2-2 linear composite with 64 piezoelectric elements mechanically diced into a piece of PMN-30%PT single crystal and separated by non-conductive epoxy kerfs at a 50-µm pitch, yielding a total active aperture of 3.2 mm in the azimuth direction and 1.8 mm in the elevation direction, with an elevation natural focal depth of 8.1 mm. The array includes non-conductive epoxy backing and two front matching layers. A custom flexible circuit connects the array piezoelectric elements to a bundle of 64 individual 48-AWG micro-coaxial cables enclosed within a 1.5-m long 10F catheter. Performance characterization was evaluated via finite element analysis simulations and afterwards compared against obtained measurement results, which showed an average center frequency of 17.7 MHz, an average bandwidth of 52.2% at -6 dB, and crosstalk less than -30 dB. Imaging of a tungsten fine-wire phantom resulted in axial and lateral spatial resolutions of approximately 90 µm and 420 ìm, respectively. The imaging capability was further evaluated with colorectal tissue-mimicking phantoms, demonstrating the potential suitability of the proposed phased-array transducer for the intraoperative assessment of surgical margins during minimally invasive colorectal surgery procedures.

5.
J Med Imaging (Bellingham) ; 2(2): 027001, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26158118

RESUMO

A dual-element needle transducer for intravascular ultrasound imaging has been developed. A low-frequency element and a high-frequency element were integrated into one device to obtain images which conveyed both low- and high-frequency information from a single scan. The low-frequency element with a center frequency of 48 MHz was fabricated from the single crystal form of lead magnesium niobate-lead titanate solid solution with two matching layers (MLs) and the high frequency element with a center frequency of 152 MHz was fabricated from lithium niobate with one ML. The measured axial and lateral resolutions were 27 and [Formula: see text], respectively, for the low-frequency element, and 14 and [Formula: see text], respectively, for the high-frequency element. The performance of the dual-element needle transducer was validated by imaging a tissue-mimicking phantom with lesion-mimicking area, and ex vivo rabbit aortas in water and rabbit whole blood. The results suggest that a low-frequency element effectively provides depth resolved images of the whole vessel and its adjacent tissue, and a high-frequency element visualizes detailed structure near the surface of the lumen wall in the presence of blood within the lumen. The advantages of a dual-element approach for intravascular imaging are also discussed.

6.
Sens Actuators A Phys ; 228: 16-22, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25914443

RESUMO

A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast.

7.
Artigo em Inglês | MEDLINE | ID: mdl-24859667

RESUMO

This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 µm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at -6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application.


Assuntos
Endossonografia/instrumentação , Chumbo/efeitos da radiação , Sistemas Microeletromecânicos/instrumentação , Nióbio/efeitos da radiação , Óxidos/efeitos da radiação , Titânio/efeitos da radiação , Transdutores , Ultrassonografia de Intervenção/instrumentação , Ultrassonografia/instrumentação , Cristalização , Desenho de Equipamento , Análise de Falha de Equipamento , Análise em Microsséries/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-23365943

RESUMO

A real-time integrated electrochemically-based dose tracking system for closed-loop drug delivery is presented. Thin film Pt sensors were integrated in an electrolytic MEMS drug delivery pump to allow dose tracking via electrochemical impedance measurement. Measurement electrode placement and composition were investigated. A bolus resolution of 230 nL was demonstrated. The sensor was calibrated for use with water (low conductivity) and 1 × PBS (high conductivity), the selected model aqueous drugs. The impedance response is dependent on delivered volume and not affected by actuation parameters. A graphical user interface was created for real-time impedance based dose tracking and leakage/blockage detection in the system. Drift in the impedance response of an idle system after perturbation (actuation) were investigated and mitigated through the use of Pt wire electrodes as opposed to thin film electrodes.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Sistemas Computacionais , Sistemas de Liberação de Medicamentos/estatística & dados numéricos , Impedância Elétrica , Técnicas Eletroquímicas , Eletrodos , Eletrólise/instrumentação , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA