Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 802, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950242

RESUMO

BACKGROUND: Wharton's Jelly (WJ) Mesenchymal Stromal Cells (MSC) have emerged as an attractive allogeneic therapy for a number of indications, except for bone-related conditions requiring new tissue formation. This may be explained by the apparent recalcitrance of MSC,WJ to differentiate into the osteogenic lineage in vitro, as opposed to permissive bone marrow (BM)-derived MSCs (MSC,BM) that readily commit to bone cells. Consequently, the actual osteogenic in vivo capacity of MSC,WJ is under discussion. METHODS: We investigated how physiological bone environments affect the osteogenic commitment of recalcitrant MSCs in vitro and in vivo. To this end, MSC of BM and WJ origin were co-cultured and induced for synchronous osteogenic differentiation in vitro using transwells. For in vivo experiments, immunodeficient mice were injected intratibially with a single dose of human MSC and bone formation was evaluated after six weeks. RESULTS: Co-culture of MSC,BM and MSC,WJ resulted in efficient osteogenesis in both cell types after three weeks. However, MSC,WJ failed to commit to bone cells in the absence of MSC,BM's osteogenic stimuli. In vivo studies showed successful bone formation within the medullar cavity of tibias in 62.5% of mice treated with MSC, WJ. By contrast, new formed trabeculae were only observed in 25% of MSC,BM-treated mice. Immunohistochemical staining of human COXIV revealed the persistence of the infused cells at the site of injection. Additionally, cells of human origin were also identified in the brain, heart, spleen, kidney and gonads in some animals treated with engineered MSC,WJ (eMSC,WJ). Importantly, no macroscopic histopathological alterations, ectopic bone formation or any other adverse events were detected in MSC-treated mice. CONCLUSIONS: Our findings demonstrate that in physiological bone microenvironment, osteogenic commitment of MSC,WJ is comparable to that of MSC,BM, and support the use of off-the-shelf allogeneic MSC,WJ products in bone repair and bone regeneration applications.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Animais , Camundongos , Osteogênese , Geleia de Wharton/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Células Cultivadas , Proliferação de Células
2.
Cells ; 11(14)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883596

RESUMO

(1) Background: the use of Mesenchymal Stromal Cells (MSC) in emerging therapies for spinal cord injury (SCI) hold the potential to improve functional recovery. However, the development of cell-based medicines is challenging and preclinical studies addressing quality, safety and efficacy must be conducted prior to clinical testing; (2) Methods: herein we present (i) the characterization of the quality attributes of MSC from the Wharton's jelly (WJ) of the umbilical cord, (ii) safety of intrathecal infusion in a 3-month subchronic toxicity assessment study, and (iii) efficacy in a rat SCI model by controlled impaction (100 kdynes) after single (day 7 post-injury) and repeated dose of 1 × 106 MSC,WJ (days 7 and 14 post-injury) with 70-day monitoring by electrophysiological testing, motor function assessment and histology evaluation; (3) Results: no toxicity associated to MSC,WJ infusion was observed. Regarding efficacy, recovery of locomotion was promoted at early time points. Persistence of MSC,WJ was detected early after administration (day 2 post-injection) but not at days 14 and 63 post-injection. (4) Conclusions: the safety profile and signs of efficacy substantiate the suitability of the presented data for inclusion in the Investigational Medicinal Product Dossier for further consideration by the competent Regulatory Authority to proceed with clinical trials.


Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Geleia de Wharton , Animais , Células Cultivadas , Humanos , Ratos , Traumatismos da Medula Espinal/terapia , Cordão Umbilical
3.
Commun Biol ; 5(1): 620, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739187

RESUMO

Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance.


Assuntos
Nucleotídeos de Desoxiguanina , Complexo I de Transporte de Elétrons , NADH Desidrogenase , Humanos , Nucleotídeos de Desoxiguanina/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
4.
Methods Mol Biol ; 2286: 251-261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32705544

RESUMO

Tissue engineering products (TEP) are a new type of medicines resulting from the combination of cells, scaffolds, and/or signalling factors, which can be used for the regeneration of damaged tissues thus opening new avenues for the treatment of complex conditions. However, such combination of biologically active elements, particularly living cells, poses an unprecedented challenge for their production under pharmaceutical standards.In the methods presented here, we formulated two types of TEP based on the use of multipotent mesenchymal stromal cells with osteogenic potential combined with osteoinductive and osteoconductive bony particles from tissue bank embedded in a fibrin hydrogel that, altogether, can induce the generation of new tissue while adapting to the diverse architecture of bony defects. In agreement with pharmaceutical quality and regulatory requirements, procedures presented herein can be performed in compliance with current good manufacturing practices and be readily implemented in straightforward facilities at hospitals and academic institutions.


Assuntos
Regeneração Óssea , Adesivo Tecidual de Fibrina/química , Células-Tronco Mesenquimais/citologia , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células Cultivadas , Adesivo Tecidual de Fibrina/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia
5.
EBioMedicine ; 62: 103133, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33232869

RESUMO

BACKGROUND: Preclinical studies have shown that gene therapy is a feasible approach to treat mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the genetic murine model of the disease (Tymp/Upp1 double knockout, dKO) has a limited functional phenotype beyond the metabolic imbalances, and so the studies showing efficacy of gene therapy have relied almost exclusively on demonstrating correction of the biochemical phenotype. Chronic oral administration of thymidine (dThd) and deoxyuridine (dUrd) to dKO mice deteriorates the phenotype of the animals, providing a better model to test therapy approaches. METHODS: dKO mice were treated with both dThd and dUrd in drinking water from weaning until the end of the study. At 8 - 11 weeks of age, mice were treated with several doses of adeno-associated virus (AAV) serotype 8 vector carrying the human TYMP coding sequence under the control of different liver-specific promoters (TBG, AAT, or HLP). The biochemical profile and functional phenotype were studied over the life of the animals. FINDINGS: Nucleoside exposure resulted in 30-fold higher plasma nucleoside levels in dKO mice compared with non-exposed wild type mice. AAV-treatment provided elevated TP activity in liver and lowered systemic nucleoside levels in exposed dKO mice. Exposed dKO mice had enlarged brain ventricles (assessed by magnetic resonance imaging) and motor impairment (rotarod test); both were prevented by AAV treatment. Among all promoters tested, AAT showed the best efficacy. INTERPRETATION: Our results show that AAV-mediated gene therapy restores the biochemical homeostasis in the murine model of MNGIE and, for the first time, demonstrate that this treatment improves the functional phenotype. FUNDING: This work was funded in part by the Spanish Instituto de Salud Carlos III, and the Generalitat de Catalunya. The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/terapia , Nucleosídeos/farmacologia , Oftalmoplegia/congênito , Animais , Terapia Combinada , Modelos Animais de Doenças , Ativação Enzimática , Dosagem de Genes , Expressão Gênica , Terapia Genética/métodos , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Oftalmoplegia/genética , Oftalmoplegia/terapia , Fenótipo , Timidina Fosforilase/genética , Resultado do Tratamento
6.
Stem Cell Res Ther ; 10(1): 356, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779673

RESUMO

BACKGROUND: Orthopaedic diseases are one of the major targets for regenerative medicine. In this context, Wharton's jelly (WJ) is an alternative source to bone marrow (BM) for allogeneic transplantation since its isolation does not require an invasive procedure for cell collection and does not raise major ethical concerns. However, the osteogenic capacity of human WJ-derived multipotent mesenchymal stromal cells (MSC) remains unclear. METHODS: Here, we compared the baseline osteogenic potential of MSC from WJ and BM cell sources by cytological staining, quantitative real-time PCR and proteomic analysis, and assessed chemical and biological strategies for priming undifferentiated WJ-MSC. Concretely, different inhibitors/activators of the TGFß1-BMP2 signalling pathway as well as the secretome of differentiating BM-MSC were tested. RESULTS: Cytochemical staining as well as gene expression and proteomic analysis revealed that osteogenic commitment was poor in WJ-MSC. However, stimulation of the BMP2 pathway with BMP2 plus tanshinone IIA and the addition of extracellular vesicles or protein-enriched preparations from differentiating BM-MSC enhanced WJ-MSC osteogenesis. Furthermore, greater outcome was obtained with the use of conditioned media from differentiating BM-MSC. CONCLUSIONS: Altogether, our results point to the use of master banks of WJ-MSC as a valuable alternative to BM-MSC for orthopaedic conditions.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Proteômica , Reação em Cadeia da Polimerase em Tempo Real
7.
Hum Gene Ther ; 30(8): 985-998, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30900470

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating disease caused by mutations in TYMP, which encodes thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction results in systemic thymidine and deoxyuridine overload, which interferes with mitochondrial DNA replication. Preclinical studies have shown that gene therapy using a lentiviral vector targeted to hematopoietic stem cells or an adeno-associated virus (AAV) vector transcriptionally targeted to liver are feasible approaches to treat MNGIE. Here, we studied the effect of various promoters (thyroxine-binding globulin [TBG], phosphoglycerate kinase [PGK], hybrid liver-specific promoter [HLP], and alpha-1-antitrypsin [AAT]) and DNA configuration (single stranded or self complementary) on expression of the TYMP transgene in the AAV8 serotype in a murine model of MNGIE. All vectors restored liver TP activity and normalized nucleoside homeostasis in mice. However, the liver-specific promoters TBG, HLP, and AAT were more effective than the constitutive PGK promoter, and the self-complementary DNA configuration did not provide any therapeutic advantage over the single-stranded configuration. Among all constructs, only AAV-AAT was effective in all mice treated at the lowest dose (5 × 1010 vector genomes/kg). As use of the AAT promoter will likely minimize the dose needed to achieve clinical efficacy as compared to the other promoters tested, we propose using the AAT promoter in the vector eventually designed for clinical use.


Assuntos
Dependovirus/genética , Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/terapia , Regiões Promotoras Genéticas , alfa 1-Antitripsina/genética , Animais , Modelos Animais de Doenças , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Homeostase , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Encefalomiopatias Mitocondriais/metabolismo , Timidina Fosforilase/genética , Transdução Genética , alfa 1-Antitripsina/metabolismo
8.
FASEB J ; 33(6): 7168-7179, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848931

RESUMO

Polymerase γ catalytic subunit (POLG) gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting POLG are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus erythro-9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested POLG-mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.


Assuntos
DNA Polimerase gama/deficiência , DNA Mitocondrial/metabolismo , Desoxirribonucleotídeos/farmacologia , Fibroblastos/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adulto , Domínio Catalítico/genética , Células Cultivadas , DNA Polimerase gama/genética , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Desoxirribonucleotídeos/metabolismo , Etídio/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Genótipo , Humanos , Masculino , Mitocôndrias Musculares/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Mutação Puntual , Conformação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência
9.
Mol Ther Methods Clin Dev ; 8: 152-165, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687034

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp-/-Upp1-/- mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2-3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp-/-Upp1-/- mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation.

10.
Hum Gene Ther ; 29(6): 708-718, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29284302

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in TYMP, the gene encoding the enzyme thymidine phosphorylase (TP). TP dysfunction results in systemic accumulation of the noxious TP substrates thymidine and deoxyuridine. Gene therapy using either a lentiviral vector or adeno-associated vector (AAV) has proven to be a feasible strategy, as both vectors restore biochemical homeostasis in a murine model of the disease. This study shows that the effect of an AAV containing the TYMP coding sequence transcriptionally targeted to the liver persists long term in mice. Although the vector copy number was diluted and AAV-mediated liver TP activity eventually reduced or lost after 21 months at the lowest vector doses, the effect was sustained (with a negligible decrease in TP activity) and fully effective on nucleoside homeostasis for at least 21 months at a dose of 2 × 1012 vg/kg. Macroscopic visual inspection of the animals' organs at completion of the study showed no adverse effects associated with the treatment. These results further support the feasibility of gene therapy for MNGIE.


Assuntos
Dependovirus/genética , Terapia Genética , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Fígado/patologia , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/terapia , Animais , Carcinogênese/patologia , Desoxiuridina/sangue , Feminino , Dosagem de Genes , Vetores Genéticos/metabolismo , Pseudo-Obstrução Intestinal/sangue , Estimativa de Kaplan-Meier , Masculino , Camundongos , Mitocôndrias Hepáticas/metabolismo , Distrofia Muscular Oculofaríngea/sangue , Oftalmoplegia/congênito , Timidina/sangue , Timidina Fosforilase/genética , Fatores de Tempo , Transgenes
11.
Hum Gene Ther ; 27(9): 656-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27004974

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a metabolic disorder caused by mutations in TYMP, encoding thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction produces systemic thymidine and deoxyuridine accumulation, which ultimately impairs mitochondrial DNA replication and results in mitochondrial dysfunction. To date, only allogeneic hematopoietic stem cell transplantation has demonstrated long-term clinical efficacy, but high morbidity and mortality associated with this procedure necessitate the search for safer alternatives. In a previous study, we demonstrated that hematopoietic stem cell gene therapy using a lentiviral vector containing the coding sequence of TYMP restored the biochemical homeostasis in an animal model of MNGIE. In the present follow-up study, we show that ectopic expression of TP in the hematopoietic system restores normal nucleoside levels in plasma, as well as in tissues affected in MNGIE such as small intestine, skeletal muscle, brain, and liver. Mitochondrial dNTP pool imbalances observed in liver of the animal model were also corrected by the treatment. The biochemical effects were maintained at least 20 months even with low levels of chimerism. No alterations in the blood cell counts or other toxic effects were observed in association with the lentiviral transduction or TP overexpression. These results further support the notion that gene therapy is a feasible treatment option for MNGIE.


Assuntos
Terapia Genética , Vetores Genéticos/administração & dosagem , Transplante de Células-Tronco Hematopoéticas , Pseudo-Obstrução Intestinal/terapia , Lentivirus/genética , Encefalomiopatias Mitocondriais/terapia , Nucleosídeos/metabolismo , Timidina Fosforilase/genética , Animais , Terapia Combinada , Modelos Animais de Doenças , Feminino , Homeostase , Pseudo-Obstrução Intestinal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Encefalomiopatias Mitocondriais/genética , Distrofia Muscular Oculofaríngea , Oftalmoplegia/congênito
12.
Mol Ther ; 22(5): 901-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24448160

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in TYMP, enconding thymidine phosphorylase (TP). TP deficiency results in systemic accumulation of thymidine and deoxyuridine, which interferes with mitochondrial DNA (mtDNA) replication and leads to mitochondrial dysfunction. To date, the only treatment available for MNGIE patients is allogeneic hematopoietic stem cell transplantation, which is associated with high morbidity and mortality. Here, we report that AAV2/8-mediated transfer of the human TYMP coding sequence (hcTYMP) under the control of a liver-specific promoter prevents the biochemical imbalances in a murine model of MNGIE. hcTYMP expression was restricted to liver, and a dose as low as 2 × 10(11) genome copies/kg led to a permanent reduction in systemic nucleoside levels to normal values in about 50% of treated mice. Higher doses resulted in reductions to normal or slightly below normal levels in virtually all mice treated. The nucleoside reduction achieved by this treatment prevented deoxycytidine triphosphate (dCTP) depletion, which is the limiting factor affecting mtDNA replication in this disease. These results demonstrate that the use of AAV to direct TYMP expression in liver is feasible as a potentially safe gene therapy strategy for MNGIE.


Assuntos
Terapia Genética , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/terapia , Timidina Fosforilase/genética , Animais , DNA Mitocondrial/genética , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Homeostase/genética , Humanos , Pseudo-Obstrução Intestinal/patologia , Fígado/metabolismo , Camundongos , Encefalomiopatias Mitocondriais/patologia , Distrofia Muscular Oculofaríngea , Mutação , Oftalmoplegia/congênito , Timidina/metabolismo , Timidina Fosforilase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA