Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
NPJ Sci Food ; 7(1): 55, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838796

RESUMO

Functional diversity within isogenic spatially organised bacterial populations has been shown to trigger emergent community properties such as stress tolerance. Considering gadB gene encoding a key glutamate decarboxylase involved in E. coli tolerance to acidic conditions, we investigated its expression in hydrogels mimicking the texture of some structured food matrices (such as minced meat or soft cheese). Taking advantage of confocal laser scanning microscopy combined with a genetically-engineered dual fluorescent reporter system, it was possible to visualise the spatial patterns of bacterial gene expression from in-gel microcolonies. In E. coli O157:H7 microcolonies, gadB showed radically different expression patterns between neutral (pH 7) or acidic (pH 5) hydrogels. Differential spatial expression was determined in acidic hydrogels with a strong expression of gadB at the microcolony periphery. Strikingly, very similar spatial patterns of gadB expression were further observed for E. coli O157:H7 grown in the presence of L. lactis. Considering the ingestion of contaminated foodstuff, survival of E. coli O157:H7 to acidic stomachal stress (pH 2) was significantly increased for bacterial cells grown in microcolonies in acidic hydrogels compared to planktonic cells. These findings have significant implications for risk assessment and public health as they highlight inherent differences in bacterial physiology and virulence between liquid and structured food products. The contrasting characteristics observed underscore the need to consider the distinct challenges posed by these food types, thereby emphasising the importance of tailored risk mitigation strategies.

2.
Cells ; 12(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371104

RESUMO

Escherichia coli is a versatile commensal species of the animal gut that can also be a pathogen able to cause intestinal and extraintestinal infections. The plasticity of its genome has led to the evolution of pathogenic strains, which represent a threat to global health. Additionally, E. coli strains are major drivers of antibiotic resistance, highlighting the urgent need for new treatment and prevention measures. The antigenic and structural heterogeneity of enterohaemorrhagic E. coli colonisation factors has limited their use for the development of effective and cross-protective vaccines. However, the emergence of new strains that express virulence factors deriving from different E. coli diarrhoeagenic pathotypes suggests that a vaccine targeting conserved proteins could be a more effective approach. In this study, we conducted proteomics analysis and functional protein characterisation to identify a group of proteins potentially involved in the adhesion of E. coli O157:H7 to the extracellular matrix and intestinal epithelial cells. Among them, OmpA has been identified as a highly conserved and immunogenic antigen, playing a significant role in the adhesion phenotype of E. coli O157:H7 and in bacterial aggregation. Furthermore, antibodies raised against recombinant OmpA effectively reduced the adhesion of E. coli O157:H7 to intestinal epithelial cells. The present work highlights the role of OmpA as a potent antigen for the development of a vaccine against intestinal pathogenic E. coli.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Animais , Escherichia coli O157/genética , Proteínas de Transporte , Proteômica , Proteínas de Escherichia coli/genética , Colágeno
3.
Food Microbiol ; 111: 104190, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681396

RESUMO

Temperature is a major determinant of Listeria (L.) monocytogenes adherence and biofilm formation on abiotic surfaces. However, its role on gene regulation of L. monocytogenes mature biofilms has not been investigated. In the present study, we aimed to evaluate the impact of temperature up- and down-shift on L. monocytogenes biofilms gene transcription. L. monocytogenes strain EGD-e biofilms were first developed on stainless steel surfaces in Brain Heart Infusion broth at 20 °C for 48 h. Then, nutrient broth was renewed, and mature biofilms were exposed to 10 °C, 20 °C or 37 °C for 24 h. Biofilm cells were harvested and RNA levels of plcA, prfA, hly, mpl, plcB, sigB, bapL, fbpA, fbpB, lmo2178, lmo0880, lmo0160, lmo1115, lmo 2089, lmo2576, lmo0159 and lmo0627 were evaluated by quantitative RT-PCR. The results revealed an over-expression of all genes tested in biofilm cells compared to planktonic cells. When biofilms were further allowed to proliferate at 20 °C for 24 h, the transcription levels of key virulence, stress response and putative binding proteins genes plcA, sigB, fbpA, fbpB, lmo1115, lmo0880 and lmo2089 decreased. A temperature-dependent transcription for sigB, plcA, hly, and lmo2089 genes was observed after biofilm proliferation at 10 °C or 37 °C. Our findings suggest that temperature differentially affects gene regulation of L. monocytogenes mature biofilms, thus modulating attributes such as virulence, stress response and pathogenesis.


Assuntos
Listeria monocytogenes , Listeria , Listeria monocytogenes/fisiologia , Virulência/genética , Temperatura , Biofilmes , Listeria/genética
4.
NPJ Biofilms Microbiomes ; 8(1): 20, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396507

RESUMO

The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure-function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.


Assuntos
Adesinas de Escherichia coli , Proteínas de Escherichia coli , Adesinas de Escherichia coli/química , Aderência Bacteriana , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
5.
Food Microbiol ; 103: 103965, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35082082

RESUMO

The spatial organisation of bacterial pathogens in food matrices remains poorly understood, but is important in improving risk assessment and preventing infection of consumers by contaminated foodstuff. By combining confocal laser scanning microscopy with genetic fluorescent labelling of Listeria monocytogenes and Escherichia coli O157:H7, it was possible to investigate the spatial patterns of colonisation of both foodborne pathogens in gel matrices, alone or in combination, in various environmental conditions. Increasing low melting point agarose (LMPA) concentrations triggers the transition between a motile single-cell lifestyle to a sessile population spatially organised as microcolonies. The size, number and morphology of microcolonies were highly affected by supplementations in NaCl or lactic acid, two compounds frequently used in food products. Strikingly, single-cell motility was partially restored at higher LMPA concentration in the presence of lactic acid for Escherichia coli O157:H7 and in the presence of NaCl for Listeria monocytogenes. Co-culture of both species in the hydrogel affected pathogen colonisation features; Listeria monocytogenes was better able to colonise gel matrices containing lactic acid in the presence of Escherichia coli O157:H7. Altogether, this investigation provides insights into the spatial distribution and structural dynamics of bacterial pathogens in gel matrices. Potential impacts on food safety are discussed.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Contagem de Colônia Microbiana , Escherichia coli O157/genética , Microbiologia de Alimentos , Listeria monocytogenes/genética
6.
J Proteomics ; 250: 104388, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34601155

RESUMO

Listeria monocytogenes presents a dimorphism associated to the SecA2 activity with cells having a normal rod shape or a dysmorphic elongated filamentous form. Besides variation of the cell and colony morphotype, this cell differentiation has profound ecophysiological and physiopathological implications with collateral effects on virulence and pathogenicity, biotope colonisation, bacterial adhesion and biofilm formation. This suggests the SecA2-only protein export could influence the listerial cell surface, which was investigated first by characterising its properties in L. monocytogenes wt and ΔsecA2. The degree of hydrophilicity and Lewis acid-base properties appeared significantly affected upon SecA2 inactivation. As modification of electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteosurfaceome was further investigated by shotgun label-free proteomic analysis with a comparative relative quantitative approach. Following secretomic analysis, the protein secretion routes of the identified proteins were mapped considering the cognate transport and post-translocational maturation systems, as well as protein categories and subcellular localisation. Differential protein abundance profiles coupled to network analysis revealed the SecA2 dependence of 48 proteins, including some related to cell envelope biogenesis, translation and protein export, which could account for modifications of adhesion and surface properties of L. monocytogenes upon SecA2 inactivation. This investigation unravelled the profound influence of SecA2 activity on the cell surface properties and proteosurfaceome of L. monocytogenes, which provides advanced insights about its ecophysiopathology. SIGNIFICANCE: L. monocytogenes is a foodborne zoonotic pathogen and etiological agent of human listeriosis. This species presents a cellular dimorphism associated to the SecA2 activity that has profound physiopathological and ecophysiological implications with collateral effects on bacterial virulence and colonisation. To explore the influence of the SecA2-only protein export on the listerial cell, the surface properties of L. monocytogenes expressing or depleted of SecA2 was characterised by microelectrophoresis, microbial affinity to solvents and contact angles analyses. As modifications of hydrophilicity and Lewis acid-base electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteinaceous subset of the surfaceome, i.e. the proteosurfaceome, was investigated further by shotgun label-free proteomic analysis. This subproteome appeared quite impacted upon SecA2 inactivation with the identification of proteins accounting for modifications in the cell surface properties. The profound influence of SecA2 activity on the cell surface of L. monocytogenes was unravelled, which provides advanced insights about its ecophysiopathology.


Assuntos
Listeria monocytogenes , Adenosina Trifosfatases , Proteínas de Bactérias/metabolismo , Humanos , Listeria monocytogenes/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteômica
7.
Sci Rep ; 9(1): 11100, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31367003

RESUMO

Antigen 43 (Ag43) is a cell-surface exposed protein of Escherichia coli secreted by the Type V, subtype a, secretion system (T5aSS) and belonging to the family of self-associating autotransporters (SAATs). These modular proteins, comprising a cleavable N-terminal signal peptide, a surface-exposed central passenger and an outer membrane C-terminal translocator, self-recognise in a Velcro-like handshake mechanism. A phylogenetic network analysis focusing on the passenger revealed for the first time that they actually distribute into four distinct classes, namely C1, C2, C3 and C4. Structural alignment and modelling analyses demonstrated these classes arose from shuffling of two different subdomains within the Ag43 passengers. Functional analyses revealed that homotypic interactions occur for all Ag43 classes but significant differences in the sedimentation kinetics and aggregation state were present when Ag43C3 was expressed. In contrast, heterotypic interaction occurred in a very limited number of cases. Single cell-force spectroscopy demonstrated the importance of specific as well as nonspecific interactions in mediating Ag43-Ag43 recognition. We propose that structural differences in the subdomains of the Ag43 classes account for different autoaggregation dynamics and propensities to co-interact.


Assuntos
Adesinas de Escherichia coli/genética , Variação Antigênica/genética , Antígenos de Bactérias/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Biofilmes/crescimento & desenvolvimento , Transporte Biológico/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Filogenia , Sistemas de Secreção Tipo V/genética
8.
Front Microbiol ; 8: 1366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790986

RESUMO

Escherichia coli O157:H7 is an enterohaemorrhagic E. coli (EHEC) responsible for serious diseases, especially pediatric, and of great concern for the meat industry. Meat contamination by EHEC occurs at slaughtering, especially at dehiding stage, where bacteria can be transferred from hides to carcasses. The skeletal muscle tissues comprise four major types of myofibres, which differ in their contraction velocity and metabolism. Myofibres are surrounded by the extracellular matrix (ECM). Adhesion of E. coli O157:H7 to meat was investigated considering well-defined types of skeletal muscle and their constituent myofibres as well as postmortem changes in muscle, using fluorescence microscopy and immunohistochemical analyses. By analysing the adhesion of E. coli O157:H7 to model oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] skeletal muscles, it first appeared that differential adhesion occurred at the surface of these extreme skeletal muscle types. At a cellular level, bacterial adhesion appeared to occur essentially at the ECM. Considering the different constituent myofibres of types I, IIA, IIX and IIB, no significant differences were observed for adhering bacteria. However, bacterial adhesion to the ECM was significantly influenced by postmortem structural modifications of muscle tissues. By providing information on spatial localisation of E. coli O157:H7 on meat, this investigation clearly demonstrated their ability to adhere to skeletal muscle, especially at the ECM, which consequently resulted in their heterogeneous distribution in meat. As discussed, these new findings should help in reassessing and mitigating the risk of contamination of meat, the food chain and ultimately human infection by EHEC.

9.
J Proteomics ; 117: 95-105, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25637307

RESUMO

As commonly seen in monoderm bacteria, Listeria monocytogenes possesses multiple membrane-bound signal peptidases of Type I (SPases I) called SipX, SipY and SipZ. In order to decipher their respective contribution in an integrated and global view, the complement of the secretome corresponding to the exoproteome was resolved by two-dimensional gel electrophoresis (2-DE). This was performed for L. monocytogenes sipX(-), sipY(-), sipZ(-) single mutants, as well as for ΔsipXY and ΔsipYZ double mutants, and then compared to that of the wild type strain. Remarkably, the amounts of listeriolysin O (LLO), phosphatidylcholine phospholipase C (PlcB) and zinc metalloproteinase Mpl in the extracellular milieu were significantly decreased upon inactivation of SipZ. For the majority of the Sec-secreted exoproteins identified, protein secretion was not affected by the inactivation of one or two of the SPases I, supporting the concept that the three SPases I have overlapping specificities for the cleavage of the signal peptides. The current study reveals that the role of SipZ as the major SPase I of L. monocytogenes applies only to a small subset of the secreted exoproteins. Rather than absolute, the notion of major and minor SPases thus appears to be relative. In addition to new insight into bacterial physiology, this investigation of the contribution of the SPases I to the exoproteome of L. monocytogenes paves the way for further characterization of other complements of the secretome under various environmental conditions. BIOLOGICAL SIGNIFICANCE: L. monocytogenes encodes three orthologous signal peptidases of Type I (SPases I). SipZ improves the secretion efficiency for a subset of extracellular virulence factors. Multiple SPases I are functionally redundant for the majority of the Sec-secreted exoproteins of L. monocytogenes. The concepts of major and minor SPases are not absolute but relative.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/enzimologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Listeria monocytogenes/genética , Proteínas de Membrana/genética , Mutação , Serina Endopeptidases/genética
10.
Front Microbiol ; 6: 1428, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733972

RESUMO

Listeria monocytogenes is able to form biofilms on various surfaces and this ability is thought to contribute to persistence in the environment and on contact surfaces in the food industry. Extracellular DNA (eDNA) is a component of the biofilm matrix of many bacterial species and was shown to play a role in biofilm establishment of L. monocytogenes. In the present study, the effect of DNaseI treatment on biofilm formation of L. monocytogenes EGD-e was investigated under static and dynamic conditions in normal or diluted complex medium at different temperatures. Biofilm formation was quantified by crystal violet staining or visualized by confocal laser scanning microscopy. Biomass of surface-attached L. monocytogenes varies depending on temperature and dilution of media. Interestingly, L. monocytogenes EGD-e forms DNase-sensitive biofilms in diluted medium whereas in full strength medium DNaseI treatment had no effect. In line with these observations, eDNA is present in the matrix of biofilms grown in diluted but not full strength medium and supernatants of biofilms grown in diluted medium contain chromosomal DNA. The DNase-sensitive phenotype could be clearly linked to reduced ionic strength in the environment since dilution of medium in PBS or saline abolished DNase sensitivity. Several other but not all species of the genus Listeria display DNase-sensitive and -resistant modes of biofilm formation. These results indicate that L. monocytogenes biofilms are DNase-sensitive especially at low ionic strength, which might favor bacterial lysis and release of chromosomal DNA. Since low nutrient concentrations with increased osmotic pressure are conditions frequently found in food processing environments, DNaseI treatment represents an option to prevent or remove Listeria biofilms in industrial settings.

11.
Int J Food Microbiol ; 188: 92-8, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25090606

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) are anthropozoonotic agents that range third among food-borne pathogens respective to their incidence and dangerousness in the European Union. EHEC are Shiga-toxin producing E. coli (STEC) responsible for foodborne poisoning mainly incriminated to the consumption of contaminated beef meat. Among the hundreds of STEC serotypes identified, EHEC mainly belong to O157:H7 but non-O157 can represent 20 to 70% of EHEC infections per year. Seven of those serogroups are especially of high-risk for human health, i.e. O26, O45, O103, O111, O121, O145 and O104. While meat can be contaminated all along the food processing chain, EHEC contamination essentially occurs at the dehiding stage of slaughtering. Investigating bacterial colonization to the skeletal-muscle extracellular matrix (ECM) proteins, it appeared that environmental factors influenced specific and non-specific bacterial adhesion of O157 and non-O157 EHEC as well as biofilm formation. Importantly, mechanical treatment (i.e. shaking, centrifugation, pipetting and vortexing) inhibited and biased the results of bacterial adhesion assay. Besides stressing the importance of the protocol to investigate bacterial adhesion to ECM proteins, this study demonstrated that the colonization abilities to ECM proteins vary among EHEC serogroups and should ultimately be taken into consideration to evaluate the risk of contamination for different types of food matrices.


Assuntos
Escherichia coli Êntero-Hemorrágica/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Microbiologia de Alimentos , Carne/microbiologia , Animais , Aderência Bacteriana/fisiologia , Toxinas Bacterianas/genética , Biofilmes , Bovinos , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Fatores de Virulência/genética
12.
Environ Microbiol ; 16(4): 1176-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24102749

RESUMO

Listeria monocytogenes has a dichotomous lifestyle, existing as an ubiquitous saprophytic species and as an opportunistic intracellular pathogen. Besides its capacity to grow in a wide range of environmental and stressful conditions, L. monocytogenes has the ability to adhere to and colonize surfaces. Morphotype variation to elongated cells forming rough colonies has been reported for different clinical and environmental isolates, including biofilms. This cell differentiation is mainly attributed to the reduced secretion of two SecA2-dependent cell-wall hydrolases, CwhA and MurA. SecA2 is a non-essential SecA paralogue forming an alternative translocase with the primary Sec translocon. Following investigation at temperatures relevant to its ecological niches, i.e. infection (37°C) and environmental (20°C) conditions, inactivation of this SecA2-only protein export pathway led, despite reduced adhesion, to the formation of filamentous biofilm with aerial structures. Compared to the wild type strain, inactivation of the SecA2 pathway promoted extensive cell aggregation and sedimentation. At ambient temperature, this effect was combined with the abrogation of cell motility resulting in elongated sedimented cells, which got knotted and entangled together in the course of filamentous-biofilm development. Such a cell differentiation provides a decisive advantage for listerial surface colonization under environmental condition. As further discussed, this morphotypic conversion has strong implication on listerial physiology and is also of potential significance for asymptomatic human/animal carriage.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Agregação Celular , Listeria monocytogenes/citologia , Microscopia Confocal , Temperatura
13.
J Agric Food Chem ; 57(23): 11106-11, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19891504

RESUMO

Previous studies have demonstrated that the intake of berry foods was associated with a reduced risk of cardiovascular diseases. The aim of the present study was to evaluate the effects of two bilberry extracts, one rich in anthocyanins extracted from untreated bilberries (BE) and a second one extracted from yeast-fermented bilberries (FBE), on the development of atherosclerosis in apolipoprotein E-deficient mice (apo E(-/-)). Apo E(-/-) mice received for 16 weeks a diet supplemented with 0.02% of either BE or FBE. Atherosclerotic plaque area was measured in the aortic sinus. Supplementation of the diet with both bilberry extracts led to a significant inhibition of plaque development, whereas no effect on oxidative stress parameters or lipid profiles could be observed, suggesting the implication of other mechanisms of action. In addition, a better protection was observed with FBE, suggesting that the fermentation generates new bioactive compounds more effective in attenuating progression of the atherosclerotic lesions.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/prevenção & controle , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/administração & dosagem , Vaccinium myrtillus/química , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA