Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(7): 211557, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35911199

RESUMO

Acoustic signalling is the predominant form of communication among cetaceans. Understanding the behavioural state of calling individuals can provide insights into the specific function of sound production; in turn, this information can aid the evaluation of passive monitoring datasets to estimate species presence, density, and behaviour. Antarctic minke whales are the most numerous baleen whale species in the Southern Ocean. However, our knowledge of their vocal behaviour is limited. Using, to our knowledge, the first animal-borne audio-video documentation of underwater behaviour in this species, we characterize Antarctic minke whale sound production and evaluate the association between acoustic behaviour, foraging behaviour, diel patterns and the presence of close conspecifics. In addition to the previously described downsweep call, we find evidence of three novel calls not previously described in their vocal repertoire. Overall, these signals displayed peak frequencies between 90 and 175 Hz and ranged from 0.2 to 0.8 s on average (90% duration). Additionally, each of the four call types was associated with measured behavioural and environmental parameters. Our results represent a significant advancement in understanding of the life history of this species and improve our capacity to acoustically monitor minke whales in a rapidly changing Antarctic region.

2.
Integr Org Biol ; 3(1): obab005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104873

RESUMO

Humpback and blue whales are large baleen-bearing cetaceans, which use a unique prey-acquisition strategy-lunge feeding-to engulf entire patches of large plankton or schools of forage fish and the water in which they are embedded. Dynamically, and while foraging on krill, lunge-feeding incurs metabolic expenditures estimated at up to 20.0 MJ. Because of prey abundance and its capture in bulk, lunge feeding is carried out at high acquired-to-expended energy ratios of up to 30 at the largest body sizes (∼27 m). We use bio-logging tag data and the work-energy theorem to show that when krill-feeding at depth while using a wide range of prey approach swimming speeds (2-5 m/s), rorquals generate significant and widely varying metabolic power output during engulfment, typically ranging from 10 to 50 times the basal metabolic rate of land mammals. At equal prey field density, such output variations lower their feeding efficiency two- to three-fold at high foraging speeds, thereby allowing slow and smaller rorquals to feed more efficiently than fast and larger rorquals. The analysis also shows how the slowest speeds of harvest so far measured may be connected to the biomechanics of the buccal cavity and the prey's ability to collectively avoid engulfment. Such minimal speeds are important as they generate the most efficient lunges. Sommaire Les rorquals à bosse et rorquals bleus sont des baleines à fanons qui utilisent une technique d'alimentation unique impliquant une approche avec élan pour engouffrer de larges quantités de plancton et bancs de petits poissons, ainsi que la masse d'eau dans laquelle ces proies sont situés. Du point de vue de la dynamique, et durant l'approche et engouffrement de krill, leurs dépenses énergétiques sont estimées jusqu'à 20.0 MJ. À cause de l'abondance de leurs proies et capture en masse, cette technique d'alimentation est effectuée à des rapports d'efficacité énergétique (acquise -versus- dépensée) estimés aux environs de 30 dans le cas des plus grandes baleines (27 m). Nous utilisons les données recueillies par des capteurs de bio-enregistrement ainsi que le théorème reliant l'énergie à l'effort pour démontrer comment les rorquals s'alimentant sur le krill à grandes profondeurs, et à des vitesses variant entre 2 et 5 m/s, maintiennent des taux de dépenses énergétiques entre 10 et 50 fois le taux métabolique basal des mammifères terrestres. À densités de proies égales, ces variations d'énergie utilisée peuvent réduire le rapport d'efficacité énergétique par des facteurs entre 2x et 3x, donc permettant aux petits et plus lents rorquals de chasser avec une efficacité comparable à celle des rorquals les plus grands et rapides. Notre analyse démontre aussi comment des vitesses d'approche plus lentes peuvent être reliées à la biomécanique de leur poche ventrale extensible, et à l'habilitée des proies à éviter d'être engouffrer. Ces minimums de vitesses sont importants car ils permettent une alimentation plus efficace énergétiquement.

3.
J Exp Biol ; 223(Pt 20)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-32820028

RESUMO

Fundamental scaling relationships influence the physiology of vital rates, which in turn shape the ecology and evolution of organisms. For diving mammals, benefits conferred by large body size include reduced transport costs and enhanced breath-holding capacity, thereby increasing overall foraging efficiency. Rorqual whales feed by engulfing a large mass of prey-laden water at high speed and filtering it through baleen plates. However, as engulfment capacity increases with body length (engulfment volume∝body length3.57), the surface area of the baleen filter does not increase proportionally (baleen area∝body length1.82), and thus the filtration time of larger rorquals predictably increases as the baleen surface area must filter a disproportionally large amount of water. We predicted that filtration time should scale with body length to the power of 1.75 (filter time∝body length1.75). We tested this hypothesis on four rorqual species using multi-sensor tags with corresponding unoccupied aircraft systems-based body length estimates. We found that filter time scales with body length to the power of 1.79 (95% CI: 1.61-1.97). This result highlights a scale-dependent trade-off between engulfment capacity and baleen area that creates a biomechanical constraint to foraging through increased filtration time. Consequently, larger whales must target high-density prey patches commensurate to the gulp size to meet their increased energetic demands. If these optimal patches are absent, larger rorquals may experience reduced foraging efficiency compared with smaller whales if they do not match their engulfment capacity to the size of targeted prey aggregations.


Assuntos
Metabolismo Energético , Comportamento Alimentar , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Baleias
4.
Sci Rep ; 10(1): 12985, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737390

RESUMO

As whales recover from commercial exploitation, they are increasing in abundance in habitats that they have been absent from for decades. However, studying the recovery and habitat use patterns of whales, particularly in remote and inaccessible regions, frequently poses logistical and economic challenges. Here we trial a new approach for measuring whale density in a remote area, using Very-High-Resolution WorldView-3 satellite imagery. This approach has capacity to provide sightings data to complement and assist traditional sightings surveys. We compare at-sea whale density estimates to estimates derived from satellite imagery collected at a similar time, and use suction-cup archival logger data to make an adjustment for surface availability. We demonstrate that satellite imagery can provide useful data on whale occurrence and density. Densities, when unadjusted for surface availability are shown to be considerably lower than those estimated by the ship survey. However, adjusted for surface availability and weather conditions (0.13 whales per km2, CV = 0.38), they fall within an order of magnitude of those derived by traditional line-transect estimates (0.33 whales per km2, CV = 0.09). Satellite surveys represent an exciting development for high-resolution image-based cetacean observation at sea, particularly in inaccessible regions, presenting opportunities for ongoing and future research.


Assuntos
Ecossistema , Imagens de Satélites , Navios , Baleias/fisiologia , Animais , Densidade Demográfica
5.
Science ; 366(6471): 1367-1372, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831666

RESUMO

The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.


Assuntos
Tamanho Corporal , Cadeia Alimentar , Baleias/anatomia & histologia , Baleias/fisiologia , Animais , Evolução Biológica , Biomassa , Ingestão de Energia , Euphausiacea , Comportamento Alimentar , Oceanos e Mares
6.
Proc Natl Acad Sci U S A ; 116(50): 25329-25332, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767746

RESUMO

The biology of the blue whale has long fascinated physiologists because of the animal's extreme size. Despite high energetic demands from a large body, low mass-specific metabolic rates are likely powered by low heart rates. Diving bradycardia should slow blood oxygen depletion and enhance dive time available for foraging at depth. However, blue whales exhibit a high-cost feeding mechanism, lunge feeding, whereby large volumes of prey-laden water are intermittently engulfed and filtered during dives. This paradox of such a large, slowly beating heart and the high cost of lunge feeding represents a unique test of our understanding of cardiac function, hemodynamics, and physiological limits to body size. Here, we used an electrocardiogram (ECG)-depth recorder tag to measure blue whale heart rates during foraging dives as deep as 184 m and as long as 16.5 min. Heart rates during dives were typically 4 to 8 beats min-1 (bpm) and as low as 2 bpm, while after-dive surface heart rates were 25 to 37 bpm, near the estimated maximum heart rate possible. Despite extreme bradycardia, we recorded a 2.5-fold increase above diving heart rate minima during the powered ascent phase of feeding lunges followed by a gradual decrease of heart rate during the prolonged glide as engulfed water is filtered. These heart rate dynamics explain the unique hemodynamic design in rorqual whales consisting of a large-diameter, highly compliant, elastic aortic arch that allows the aorta to accommodate blood ejected by the heart and maintain blood flow during the long and variable pauses between heartbeats.


Assuntos
Balaenoptera/fisiologia , Bradicardia/veterinária , Taquicardia/veterinária , Animais , Bradicardia/fisiopatologia , Eletrocardiografia , Comportamento Alimentar , Coração/fisiologia , Frequência Cardíaca , Oxigênio/metabolismo , Taquicardia/fisiopatologia
7.
Integr Comp Biol ; 59(1): 48-60, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445585

RESUMO

Blue whales are often characterized as highly stable, open-ocean swimmers who sacrifice maneuverability for long-distance cruising performance. However, recent studies have revealed that blue whales actually exhibit surprisingly complex underwater behaviors, yet little is known about the performance and control of these maneuvers. Here, we use multi-sensor biologgers equipped with cameras to quantify the locomotor dynamics and the movement of the control surfaces used by foraging blue whales. Our results revealed that simple maneuvers (rolls, turns, and pitch changes) are performed using distinct combinations of control and power provided by the flippers, the flukes, and bending of the body, while complex trajectories are structured by combining sequences of simple maneuvers. Furthermore, blue whales improve their turning performance by using complex banked turns to take advantage of their substantial dorso-ventral flexibility. These results illustrate the important role body flexibility plays in enhancing control and performance of maneuvers, even in the largest of animals. The use of the body to supplement the performance of the hydrodynamically active surfaces may represent a new mechanism in the control of aquatic locomotion.


Assuntos
Balaenoptera/fisiologia , Comportamento Predatório , Natação , Animais , Fenômenos Biomecânicos , Hidrodinâmica
8.
Anat Rec (Hoboken) ; 300(11): 1935-1941, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28971623

RESUMO

The anatomy of large cetaceans has been well documented, mostly through dissection of dead specimens. However, the difficulty of studying the world's largest animals in their natural environment means the functions of anatomical structures must be inferred. Recently, non-invasive tracking devices have been developed that measure body position and orientation, thereby enabling the detailed reconstruction of underwater trajectories. The addition of cameras to the whale-borne tags allows the sensor data to be matched with real-time observations of how whales use their morphological structures, such as flukes, flippers, feeding apparatuses, and blowholes for the physiological functions of locomotion, feeding, and breathing. Here, we describe a new tag design with integrated video and inertial sensors and how it can be used to provide insights to the function of whale anatomy. This technology has the potential to facilitate a wide range of discoveries and comparative studies, but many challenges remain to increase the resolution and applicability of the data. Anat Rec, 300:1935-1941, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Sistemas de Informação Geográfica/instrumentação , Natação/fisiologia , Gravação em Vídeo/instrumentação , Baleias/anatomia & histologia , Animais , Fenômenos Biomecânicos , Meio Ambiente , Comportamento Alimentar/fisiologia , Oceanos e Mares , Orientação , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Respiração , Gravação em Vídeo/métodos , Baleias/fisiologia
9.
Ann Rev Mar Sci ; 9: 367-386, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27620830

RESUMO

Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.


Assuntos
Comportamento Alimentar , Baleias , Animais , Tamanho Corporal , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA