Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Horm Behav ; 162: 105547, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677262

RESUMO

The ability of individual animals to defend a territory as well as various phenotypic and behavioral traits may be targets of sexual selection used by males to evaluate their competitors or by females to choose males. A frequent question in animal behavior is whether male traits and characteristics of their territory are correlated and what are the mechanisms that may mediate such associations when they exist. Because hormones link phenotype to behavior, by studying the role of testosterone in territoriality one may come closer to understanding the mechanisms mediating correlations or lack thereof between characteristics of territories and of males. We evaluated whether variation in characteristics of territories (size and quality) are correlated with variation in morphology, coloration, testosterone, heterozygosity, and calls in two species of poison frogs. The Amazonian frog Allobates aff. trilineatus exhibits male care and defends territories only during the breeding season, while the endangered frog Oophaga lehmanni displays maternal care and defends territories throughout the year. We found that morphological traits (body length, weight, thigh size), call activity, and testosterone levels correlated with size and various indicators of quality of the territory. However, the direction of these correlations (whether positive or negative) and which specific morphological, acoustic traits or testosterone level variables covaried depended on the species. Our findings highlight an endocrine pathway as part of the physiological machinery that may underlie the interplay between male traits and territorial behavior. We were able to identify some male traits related to territory attributes, but whether females choose males based on these traits requires further research.

2.
J Hered ; 115(3): 311-316, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513109

RESUMO

Animals living in caves are of broad relevance to evolutionary biologists interested in understanding the mechanisms underpinning convergent evolution. In the Eastern Andes of Colombia, populations from at least two distinct clades of Trichomycterus catfishes (Siluriformes) independently colonized cave environments and converged in phenotype by losing their eyes and pigmentation. We are pursuing several research questions using genomics to understand the evolutionary forces and molecular mechanisms responsible for repeated morphological changes in this system. As a foundation for such studies, here we describe a diploid, chromosome-scale, long-read reference genome for Trichomycterus rosablanca, a blind, depigmented species endemic to the karstic system of the department of Santander. The nuclear genome comprises 1 Gb in 27 chromosomes, with a 40.0× HiFi long-read genome coverage having an N50 scaffold of 40.4 Mb and N50 contig of 13.1 Mb, with 96.9% (Eukaryota) and 95.4% (Actinopterygii) universal single-copy orthologs (BUSCO). This assembly provides the first reference genome for the speciose genus Trichomycterus, serving as a key resource for research on the genomics of phenotypic evolution.


Assuntos
Peixes-Gato , Cavernas , Genoma , Genômica , Animais , Peixes-Gato/genética , Peixes-Gato/classificação , Genômica/métodos , Colômbia , Evolução Biológica , Fenótipo , Filogenia
3.
Biodivers Data J ; 11: e113396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028240

RESUMO

Studies on genetic variability amongst native and introduced species contribute to a better understanding of the genetic diversity of species along their autochthonous distribution and identify possible routes of introduction. Gonatodescaudiscutatus is a gecko native to western Ecuador and introduced to the Galapagos Islands. Despite being a successful species in human-modified habitats along its native and non-native ranges, neither the colonisation process nor the genetic diversity of this gecko is known. In this study, we analysed 55 individuals from 14 localities in western Ecuador and six localities in San Cristobal Island, Galapagos - the only island with a large, self-sustaining population. We amplified and analysed the genetic variability of two nuclear genes (Cmos and Rag2) and one mitochondrial gene (16S). Cmos and Rag2 sequences presented little to none genetic variability, while 16S allowed us to build a haplotype network. We identified nine haplotypes across mainland Ecuador, two of which are also present in Galapagos. Low genetic diversity between insular and continental populations suggests that the introduction of G.caudiscutatus on the Islands is relatively recent. Due to the widespread geographical distribution of mainland haplotypes, it was not possible to determine the source population of the introduction. This study represents the first exploration of the genetic diversity of Gonatodescaudiscutatus, utilising genetic tools to gain insights into its invasion history in the Galapagos.

5.
BMC Ecol Evol ; 22(1): 95, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918644

RESUMO

BACKGROUND: Metabolic activity and environmental energy are two of the most studied putative drivers of molecular evolutionary rates. Their extensive study, however, has resulted in mixed results and has rarely included the exploration of interactions among various factors impacting molecular evolutionary rates across large clades. Taking the diverse avian family Furnariidae as a case study, we examined the association between several estimates of molecular evolutionary rates with proxies of metabolic demands imposed by flight (wing loading and wing shape) and proxies of environmental energy across the geographic ranges of species (temperature and UV radiation). RESULTS: We found weak evidence of a positive effect of environmental and morphological variables on mitochondrial substitution rates. Additionally, we found that temperature and UV radiation interact to explain molecular rates at nucleotide sites affected by selection and population size (non-synonymous substitutions), contrary to the expectation of their impact on sites associated with mutation rates (synonymous substitutions). We also found a negative interaction between wing shape (as described by the hand-wing index) and body mass explaining mitochondrial molecular rates, suggesting molecular signatures of positive selection or reduced population sizes in small-bodied species with greater flight activity. CONCLUSIONS: Our results suggest that the demands of flight and environmental energy pose multiple evolutionary pressures on the genome either by driving mutation rates or via their association with natural selection or population size. Data from whole genomes and detailed physiology across taxa will bring a more complete picture of the impact of metabolism, population size, and the environment on avian genome evolution.


Assuntos
Voo Animal , Asas de Animais , Animais , Evolução Biológica , Aves/genética , Evolução Molecular , Voo Animal/fisiologia , Filogenia , Asas de Animais/anatomia & histologia
6.
Ecol Evol ; 12(3): e8698, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342618

RESUMO

High-elevation organisms are expected to evolve physiological adaptations to cope with harsh environmental conditions. Yet, evidence for such adaptive differences, especially compared to closely related lowland taxa occurring along the same elevational gradient, is rare. Revisiting an anecdotal natural history observation by O. Bangs from 1899 and based on new measurements of museum specimens, we confirmed that the high-elevation hermit wood wren (Henicorhina anachoreta) from the Sierra Nevada de Santa Marta, Colombia, has longer, more insulative feathers on the chest and back, than its lower-elevation counterpart the grey-breasted wood wren (H. leucophrys). However, we did not find evidence for the same specializations in subspecies of H. leucophrys that live at high elevations on other elevational gradients in the Colombian Andes, although similar adaptive solutions have arisen in separate mountain systems like the Himalayas. Adaptations in plumage may be associated with the recurrence of elevational species replacements throughout the tropics.

7.
Proc Biol Sci ; 288(1948): 20210188, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849318

RESUMO

Temporal variation in the connectivity of populations of migratory animals has not been widely documented, despite having important repercussions for population ecology and conservation. Because the long-distance movements of migratory animals link ecologically distinct and geographically distant areas of the world, changes in the abundance and migratory patterns of species may reflect differential drivers of demographic trends acting over various spatial scales. Using stable hydrogen isotope analyses (δ2H) of feathers from historical museum specimens and contemporary samples obtained in the field, we provide evidence for an approximately 600 km northward shift over 45 years in the breeding origin of a species of songbird of major conservation concern (blackpoll warbler, Setophaga striata) wintering in the foothills of the eastern Andes of Colombia. Our finding mirrors predictions of range shifts for boreal-breeding species under warming climate scenarios and habitat loss in the temperate zone, and underscores likely drivers of widespread declines in populations of migratory birds. Our work also highlights the value of natural history collections to document the effects of global change on biodiversity.


Assuntos
Passeriformes , Aves Canoras , Migração Animal , Animais , Colômbia , Estações do Ano
8.
Conserv Biol ; 35(5): 1552-1563, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33565119

RESUMO

Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35-60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.


Cambios en las Huellas Funcionales Aviarias en un Bosque Neotropical de Montaña durante Cien Años como Indicadores de la Integridad del Ecosistema Resumen Las características ecológicamente relevantes de los organismos que pertenecen a un ensamblaje determinan la huella funcional de un ecosistema (es decir, la forma, el tamaño y la posición del espacio multidimensional de la característica en cuestión). Por lo tanto, la cuantificación de los cambios en las huellas funcionales puede proporcionar información sobre los efectos que tiene la pérdida o ganancia de diversidad a lo largo del tiempo sobre las condiciones del ecosistema; por esto se le considera una estrategia prometedora para el monitoreo de la integridad ecológica. Sin embargo, lo anterior es pocas veces posible debido a las limitaciones de los censos históricos y a la falta de datos sobre las características del organismo, particularmente en las diversas regiones tropicales. Con datos detallados de censos realizados durante cuatro periodos en más de un siglo, y utilizando las características morfológicas y ecológicas de 233 especies, cuantificamos los cambios en la huella funcional aviaria de un bosque tropical de montaña en los Andes de Colombia. Encontramos que el 78% de la variación en el espacio funcional, sin importar el periodo, estuvo descrito por tres ejes principales que resumen el tamaño corporal, la habilidad de dispersión (indicada por la forma de las alas) y la amplitud del hábitat. Los cambios en la composición de especies alteraron significativamente la huella funcional del ensamblaje y la riqueza y dispersión funcional disminuyeron en 35-60%. Debido a la pérdida de especies y a la adición de especies nuevas al ensamblaje, el espacio funcional disminuyó con el tiempo, pero, durante la década de 2010, al menos el 11% de su volumen se extendió a áreas de espacio funcional que no estaban ocupadas cien años antes. El ensamblaje ahora incluye menos especies de gran tamaño, más especies con buena habilidad de dispersión y menos especialistas de hábitat. Las especies que se perdieron eran funcionalmente únicas, lo que resultó en reducciones importantes en la riqueza y en la dispersión funcional después de su pérdida, e implicó consecuencias importantes para la integridad del ecosistema. Los esfuerzos de conservación enfocados en mantener la función del ecosistema deben ir más allá de la búsqueda de la preservación del número de especies y enfocarse también en el diseño de estrategias complementarias para el mantenimiento de la función ecológica por medio de la identificación y conservación de especies con características que otorgan una vulnerabilidad alta, como lo son el tamaño corporal grande, una habilidad de dispersión pobre y una mayor especialización de hábitat.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Aves , Florestas
9.
Zootaxa ; 4817(1): zootaxa.4817.1.1, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-33055681

RESUMO

Populations in the Rufous Antpitta (Grallaria rufula) complex occupy humid montane forests of the Andes from northern Colombia and adjacent Venezuela to central Bolivia. Their tawny to cinnamon-colored plumages are generally uniform, featuring subtle variation in hue and saturation across this range. In contrast to their conservative plumage, substantial vocal differences occur among geographically isolated or parapatric populations. Working within the framework of a comprehensive molecular phylogeny, we reexamined species limits in the G. rufula complex, basing taxonomic recommendations on diagnostic differences in vocalizations and considering identifiable differences in plumage where pertinent. We identified 16 populations for species designation, including seven populations previously described as subspecies and, remarkably, six new species described herein. Within one of these species, we identified less robust vocal differences between populations that we designate as subspecies. Geographic variation exists within another species, but its critical evaluation requires additional material. Taxonomic revisions of groups consisting of cryptic species, like the Grallaria rufula complex, are imperative for their conservation. Rather than widespread species as currently defined, these complexes can comprise many range-restricted taxa at higher risk of extinction given the continuing human pressures on their habitats.


Assuntos
Passeriformes , Animais , Filogenia
10.
Curr Biol ; 30(7): 1312-1321.e6, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32197080

RESUMO

Migratory animals move up to thousands of kilometers every year [1]. Losses of migration (i.e., migratory drop-offs) occur when individuals of a migratory species stop migrating and establish founder sedentary populations, a phenomenon documented in birds [2-5] and butterflies [6]. In theory, losses-and also gains-of migration might promote speciation if sedentary and migratory populations become reproductively isolated [7-9]. Because migratory and sedentary strategies involve alternative physiological, behavioral, and morphological traits [10-13], divergence along multiple axes of organismal function is expected to accompany switches in migratory behavior, potentially accelerating speciation. We present evidence of speciation driven by a migratory drop-off in the fork-tailed flycatcher (Tyrannus savana) resulting in reproductive isolation likely driven by changes in breeding schedules (allochronic speciation [13-15]) and geographic isolation of breeding grounds (allopatric speciation [16]). Phylogenetic analyses across New World flycatchers (Tyrannidae) showed that an association between speciation and drop-offs is also observable at a macroevolutionary scale. Loss of migration was significantly more frequent than its gain, and speciation rates of migratory and partially migratory lineages (i.e., species having both migratory and sedentary populations) exceeded those of sedentary lineages. Models of trait evolution indicated that partial migration is an intermediate step between migratory and sedentary states in this family. Given that partial migration is widespread across migratory animals (e.g., of all migratory birds, ca. 51% are partially migratory [5]), speciation via switches in migratory behavior might be an important yet overlooked mechanism of animal diversification.


Assuntos
Migração Animal , Especiação Genética , Passeriformes/fisiologia , Isolamento Reprodutivo , Animais , Passeriformes/genética
11.
G3 (Bethesda) ; 10(2): 475-478, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31857331

RESUMO

The Horned Lark (Eremophila alpestris) is a small songbird that exhibits remarkable geographic variation in appearance and habitat across an expansive distribution. While E. alpestris has been the focus of many ecological and evolutionary studies, we still lack a highly contiguous genome assembly for the Horned Lark and related taxa (Alaudidae). Here, we present CLO_EAlp_1.0, a highly contiguous assembly for E. alpestris generated from a blood sample of a wild, male bird captured in the Altiplano Cundiboyacense of Colombia. By combining short-insert and mate-pair libraries with the ALLPATHS-LG genome assembly pipeline, we generated a 1.04 Gb assembly comprised of 2713 scaffolds, with a largest scaffold size of 31.81 Mb, a scaffold N50 of 9.42 Mb, and a scaffold L50 of 30. These scaffolds were assembled from 23685 contigs, with a largest contig size of 1.69 Mb, a contig N50 of 193.81 kb, and a contig L50 of 1429. Our assembly pipeline also produced a single mitochondrial DNA contig of 14.00 kb. After polishing the genome, we identified 94.5% of single-copy gene orthologs from an Aves data set and 97.7% of single-copy gene orthologs from a vertebrata data set, which further demonstrates the high quality of our assembly. We anticipate that this genomic resource will be useful to the broader ornithological community and those interested in studying the evolutionary history and ecological interactions of larks, which comprise a widespread, yet understudied lineage of songbirds.


Assuntos
Genoma , Aves Canoras/genética , Animais , Masculino
12.
Zootaxa ; 4442(3): 491-497, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30313979

RESUMO

The selection of species and individuals for molecular analyses critically affects inferences in various fields of systematic biology including phylogenetics, phylogeography, and species delimitation. Especially in areas like the Neotropical region where molecular analyses have recovered substantial within-species divergence and unexpected affinities of populations (Turchetto-Zolet et al. 2013), biases resulting from incomplete taxonomic or geographic sampling may compromise the understanding of phylogenetic relationships (Avendaño et al. 2017). Here we describe a case in which assessments of the validity of a potentially extinct species of Neotropical bird were likely compromised because within-species variation was not accounted for in phylogenetic analyses evaluating the alternative hypothesis that the only known specimen may represent a hybrid.


Assuntos
Aves , Filogenia , Animais , Biologia , Filogeografia
13.
Ecol Evol ; 8(13): 6515-6528, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038753

RESUMO

Phylogeographic studies often infer historical demographic processes underlying species distributions based on patterns of neutral genetic variation, but spatial variation in functionally important genes can provide additional insights about biogeographic history allowing for inferences about the potential role of adaptation in geographic range evolution. Integrating data from neutral markers and genes involved in oxygen (O2)-transport physiology, we test historical hypotheses about colonization and gene flow across low- and high-altitude regions in the Ruddy Duck (Oxyura jamaicensis), a widely distributed species in the New World. Using multilocus analyses that for the first time include populations from the Colombian Andes, we also examined the hypothesis that Ruddy Duck populations from northern South America are of hybrid origin. We found that neutral and functional genes appear to have moved into the Colombian Andes from both North America and southern South America, and that high-altitude Colombian populations do not exhibit evidence of adaptation to hypoxia in hemoglobin genes. Therefore, the biogeographic history of Ruddy Ducks is likely more complex than previously inferred. Our new data raise questions about the hypothesis that adaptation via natural selection to high-altitude conditions through amino acid replacements in the hemoglobin protein allowed Ruddy Ducks to disperse south along the high Andes into southern South America. The existence of shared genetic variation with populations from both North America and southern South America as well as private alleles suggests that the Colombian population of Ruddy Ducks may be of old hybrid origin. This study illustrates the breadth of inferences one can make by combining data from nuclear and functionally important loci in phylogeography, and underscores the importance of complete range-wide sampling to study species history in complex landscapes.

14.
Ecol Evol ; 8(8): 3800-3814, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721258

RESUMO

Environmental factors strongly influence the ecology and evolution of vector-borne infectious diseases. However, our understanding of the influence of climatic variation on host-parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather-station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host-parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.

15.
Oecologia ; 187(1): 1-13, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29564539

RESUMO

Tools to study seasonal changes in animal diets are needed to address a wide range of ecological questions. This is especially true of migratory animals that experience distinct environments where diets may be substantially different. However, tracking diets of individuals that move vast distances has proven difficult. Compound-specific isotope analysis has emerged as a valuable tool to study diets but has been little used to study dietary changes of migratory animals. Using this technique, we quantify seasonal variation in the annual diet of a migratory songbird (gray-cheeked thrush, Catharus minimus) and test the hypothesis that migrants change their diet in response to the energetic requirements of different periods of the annual cycle. By measuring δ13C and δ15N values of amino acids from feathers grown on the breeding grounds, blood formed during migration and claw grown on the wintering grounds, we found that migration is associated with greater consumption of fruit, compared to the breeding or wintering periods. This was confirmed by the lower trophic position of blood compared to feather and claw, by a decrease in the δ15N value of the source amino acid phenylalanine in blood as a function of days of stopover, and by the positive correlation between δ15N and δ13C values of phenylalanine in blood, and not in feather or claw. This study illustrates how isotopic analysis of amino acids can contribute to understand food webs, seasonal dietary changes and metabolic routing of nutrients in migratory animals.


Assuntos
Aves Canoras , Aminoácidos , Migração Animal , Animais , Dieta , Isótopos , Isótopos de Nitrogênio , Estações do Ano
16.
Syst Biol ; 67(2): 181-194, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945876

RESUMO

Progress in the development and use of methods for species delimitation employing phenotypic data lags behind conceptual and practical advances in molecular genetic approaches. The basic evolutionary model underlying the use of phenotypic data to delimit species assumes random mating and quantitative polygenic traits, so that phenotypic distributions within a species should be approximately normal for individuals of the same sex and age. Accordingly, two or more distinct normal distributions of phenotypic traits suggest the existence of multiple species. In light of this model, we show that analytical approaches employed in taxonomic studies using phenotypic data are often compromised by three issues: 1) reliance on graphical analyses that convey little information on phenotype frequencies; 2) exclusion of characters potentially important for species delimitation following reduction of data dimensionality; and 3) use of measures of central tendency to evaluate phenotypic distinctiveness. We outline approaches to overcome these issues based on statistical developments related to normal mixture models (NMMs) and illustrate them empirically with a reanalysis of morphological data recently used to claim that there are no morphologically distinct species of Darwin's ground-finches (Geospiza). We found negligible support for this claim relative to taxonomic hypotheses recognizing multiple species. Although species limits among ground-finches merit further assessments using additional sources of information, our results bear implications for other areas of inquiry including speciation research: because ground-finches have likely speciated and are not trapped in a process of "Sisyphean" evolution as recently argued, they remain useful models to understand the evolutionary forces involved in speciation. Our work underscores the importance of statistical approaches grounded on appropriate evolutionary models for species delimitation. We discuss how NMMs offer new perspectives in the kind of inferences available to systematists, with significant repercussions on ideas about the phenotypic structure of biodiversity.


Assuntos
Tentilhões/fisiologia , Modelos Biológicos , Filogenia , Animais , Biodiversidade , Interpretação Estatística de Dados , Tentilhões/genética , Fenótipo , Especificidade da Espécie
17.
BMC Evol Biol ; 17(1): 257, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246108

RESUMO

BACKGROUND: Characterizations of the dynamics of hybrid zones in space and time can give insights about traits and processes important in population divergence and speciation. We characterized a hybrid zone between tanagers in the genus Ramphocelus (Aves, Thraupidae) located in southwestern Colombia. We evaluated whether this hybrid zone originated as a result of secondary contact or of primary differentiation, and described its dynamics across time using spatial analyses of molecular, morphological, and coloration data in combination with paleodistribution modeling. RESULTS: Models of potential historical distributions based on climatic data and genetic signatures of demographic expansion suggested that the hybrid zone likely originated following secondary contact between populations that expanded their ranges out of isolated areas in the Quaternary. Concordant patterns of variation in phenotypic characters across the hybrid zone and its narrow extent are suggestive of a tension zone, maintained by a balance between dispersal and selection against hybrids. Estimates of phenotypic cline parameters obtained using specimens collected over nearly a century revealed that, in recent decades, the zone appears to have moved to the east and to higher elevations, and may have become narrower. Genetic variation was not clearly structured along the hybrid zone, but comparisons between historical and contemporary specimens suggested that temporal changes in its genetic makeup may also have occurred. CONCLUSIONS: Our data suggest that the hybrid zone likey resulted from secondary contact between populations. The observed changes in the hybrid zone may be a result of sexual selection, asymmetric gene flow, or environmental change.


Assuntos
Aves/genética , Hibridização Genética , Análise de Variância , Animais , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Masculino , Fenótipo , Filogeografia , Pigmentação/genética , Densidade Demográfica
18.
Mol Phylogenet Evol ; 111: 87-97, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347888

RESUMO

Phylogeographic studies seeking to describe biogeographic patterns, infer evolutionary processes, and revise species-level classification should properly characterize the distribution ranges of study species, and thoroughly sample genetic variation across taxa and geography. This is particularly necessary for widely distributed organisms occurring in complex landscapes, such as the Neotropical region. Here, we clarify the geographic range and revisit the phylogeography of the Black-billed Thrush (Turdus ignobilis), a common passerine bird from lowland tropical South America, whose evolutionary relationships and species limits were recently evaluated employing phylogeographic analyses based on partial knowledge of its distribution and incomplete sampling of populations. Our work employing mitochondrial and nuclear DNA sequences sampled all named subspecies and multiple populations across northern South America, and uncovered patterns not apparent in earlier work, including a biogeographic interplay between the Amazon and Orinoco basins and the occurrence of distinct lineages with seemingly different habitat affinities in regional sympatry in the Colombian Amazon. In addition, we found that previous inferences about the affinities and taxonomic status of Andean populations assumed to be allied to populations from the Pantepui region were incorrect, implying that inferred biogeographic and taxonomic scenarios need re-evaluation. We propose a new taxonomic treatment, which recognizes two distinct biological species in the group. Our findings illustrate the importance of sufficient taxon and geographic sampling to reconstruct evolutionary history and to evaluate species limits among Neotropical organisms. Considering the scope of the questions asked, advances in Neotropical phylogeography will often require substantial cross-country scientific collaboration.


Assuntos
Biodiversidade , Filogeografia , Aves Canoras/classificação , Clima Tropical , Altitude , Animais , Teorema de Bayes , Ecossistema , Variação Genética , Haplótipos/genética , Filogenia , Análise de Sequência de DNA , Aves Canoras/genética , América do Sul , Especificidade da Espécie
19.
Environ Sci Pollut Res Int ; 23(22): 22968-22979, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27581044

RESUMO

Human activities in the Sabana de Bogotá, Colombia, release toxic metals such as lead (Pb) and chromium (Cr) into the environment polluting the air, water, and soil. Because birds are in contact with these pollutants and their sources, they may serve as bioindicator organisms. We evaluated the use of hummingbird feathers obtained from individuals captured in three sites of the Sabana de Bogotá as bioindicators of toxic metal pollution using spectrophotometric and spectroscopic methods based on single-feather samples. We also characterized the bacterial microbiota associated with hummingbird feathers by molecular identification using the 16S rRNA with a special focus on sporulated bacteria. Finally, we described the interactions which naturally occur among the feathers, their associated bacteria, and pollutants. We found differences in Pb and Cr concentrations between sampling sites, which ranged from 2.11 to 4.69 ppm and 0.38 to 3.00 ppm, respectively. This may reflect the impact of the activities held in those sites which release pollutants to the environment. Bacterial assemblages mainly consisted of sporulated bacilli in the Bacillaceae family (65.7 % of the identified morphotypes). We conclude that the feathers of wild tropical birds, including hummingbirds, can be used as lead and chromium bioindicators and that bacteria growing on feathers may in fact interact with these two toxic metals.


Assuntos
Bacillaceae/efeitos dos fármacos , Aves , Cromo/farmacologia , Plumas/química , Chumbo/farmacologia , Animais , Poluição Ambiental/análise , Intoxicação por Metais Pesados , Intoxicação , RNA Ribossômico 16S/análise
20.
Zootaxa ; 4136(2): 373-81, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27395721

RESUMO

Molecular phylogenetic analyses of the genus Chlorospingus (Aves: Emberizidae) indicate that the genus is not monophyletic because Chlorospingus flavovirens is actually a member of the tanager family (Thraupidae), in which its closest relatives are members of the genus Bangsia. We thus propose that C. flavovirens be transferred to Thraupidae and to the genus Bangsia.


Assuntos
Passeriformes/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Ecossistema , Tamanho do Órgão , Passeriformes/anatomia & histologia , Passeriformes/genética , Passeriformes/crescimento & desenvolvimento , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA