Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cells ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120291

RESUMO

A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.


Assuntos
Mitocôndrias , Neurônios , Rotenona , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Rotenona/farmacologia , Envelhecimento , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Hidrocortisona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doadores de Tecidos , Glicólise/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo
2.
Stem Cell Res Ther ; 15(1): 200, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971770

RESUMO

BACKGROUND: Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS: Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-ß (Aß) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS: ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aß-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αß toxicity and prevent synapse loss after Aß treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aß toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS: Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Neurogênese , Fármacos Neuroprotetores , Receptor trkB , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Neurogênese/efeitos dos fármacos , Receptor trkB/metabolismo , Receptor trkB/agonistas , Receptor trkB/genética , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Fármacos Neuroprotetores/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
3.
Nat Commun ; 15(1): 2243, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472200

RESUMO

Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ß-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Perfilação da Expressão Gênica
4.
Stem Cell Reports ; 18(12): 2386-2399, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977146

RESUMO

Cerebral small vessel disease (SVD) affects the small vessels in the brain and is a leading cause of stroke and dementia. Emerging evidence supports a role of the extracellular matrix (ECM), at the interface between blood and brain, in the progression of SVD pathology, but this remains poorly characterized. To address ECM role in SVD, we developed a co-culture model of mural and endothelial cells using human induced pluripotent stem cells from patients with COL4A1/A2 SVD-related mutations. This model revealed that these mutations induce apoptosis, migration defects, ECM remodeling, and transcriptome changes in mural cells. Importantly, these mural cell defects exert a detrimental effect on endothelial cell tight junctions through paracrine actions. COL4A1/A2 models also express high levels of matrix metalloproteinases (MMPs), and inhibiting MMP activity partially rescues the ECM abnormalities and mural cell phenotypic changes. These data provide a basis for targeting MMP as a therapeutic opportunity in SVD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Acidente Vascular Cerebral , Humanos , Células Endoteliais , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Matriz Extracelular , Metaloproteinases da Matriz/genética , Colágeno Tipo IV/genética
5.
Proc Natl Acad Sci U S A ; 120(21): e2218478120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192167

RESUMO

Aneuploidy syndromes impact multiple organ systems but understanding of tissue-specific aneuploidy effects remains limited-especially for the comparison between peripheral tissues and relatively inaccessible tissues like brain. Here, we address this gap in knowledge by studying the transcriptomic effects of chromosome X, Y, and 21 aneuploidies in lymphoblastoid cell lines, fibroblasts and iPSC-derived neuronal cells (LCLs, FCL, and iNs, respectively). We root our analyses in sex chromosome aneuploidies, which offer a uniquely wide karyotype range for dosage effect analysis. We first harness a large LCL RNA-seq dataset from 197 individuals with one of 6 sex chromosome dosages (SCDs: XX, XXX, XY, XXY, XYY, and XXYY) to i) validate theoretical models of SCD sensitivity and ii) define an expanded set of 41 genes that show obligate dosage sensitivity to SCD and are all in cis (i.e., reside on the X or Y chromosome). We then use multiple complementary analyses to show that cis effects of SCD in LCLs are preserved in both FCLs (n = 32) and iNs (n = 24), whereas trans effects (i.e., those on autosomal gene expression) are mostly not preserved. Analysis of additional datasets confirms that the greater cross-cell type reproducibility of cis vs. trans effects is also seen in trisomy 21 cell lines. These findings i) expand our understanding of X, Y, and 21 chromosome dosage effects on human gene expression and ii) suggest that LCLs may provide a good model system for understanding cis effects of aneuploidy in harder-to-access cell types.


Assuntos
Aneuploidia , Síndrome de Down , Humanos , Reprodutibilidade dos Testes , Síndrome de Down/genética , Cromossomos Sexuais , Expressão Gênica
6.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254682

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, and risk-influencing genetics implicates microglia and neuroimmunity in the pathogenesis of AD. Induced pluripotent stem cell (iPSC)-derived microglia (iPSC-microglia) are increasingly used as a model of AD, but the relevance of historical immune stimuli to model AD is unclear. We performed a detailed cross-comparison over time on the effects of combinatory stimulation of iPSC-microglia, and in particular their relevance to AD. We used single-cell RNA sequencing to measure the transcriptional response of iPSC-microglia after 24 h and 48 h of stimulation with prostaglandin E2 (PGE2) or lipopolysaccharide (LPS)+interferon gamma (IFN-γ), either alone or in combination with ATPγS. We observed a shared core transcriptional response of iPSC-microglia to ATPγS and to LPS+IFN-γ, suggestive of a convergent mechanism of action. Across all conditions, we observed a significant overlap, although directional inconsistency to genes that change their expression levels in human microglia from AD patients. Using a data-led approach, we identify a common axis of transcriptomic change across AD genetic mouse models of microglia and show that only LPS provokes a transcriptional response along this axis in mouse microglia and LPS+IFN-γ in human iPSC-microglia. This article has an associated First Person interview with the first author of the paper.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/metabolismo , Animais , Dinoprostona/metabolismo , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/patologia , Transcriptoma/genética
7.
Front Mol Neurosci ; 15: 892820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928792

RESUMO

Familial hemiplegic migraine (FHM) is a severe neurogenetic disorder for which three causal genes, CACNA1A, SCN1A, and ATP1A2, have been implicated. However, more than 80% of referred diagnostic cases of hemiplegic migraine (HM) are negative for exonic mutations in these known FHM genes, suggesting the involvement of other genes. Using whole-exome sequencing data from 187 mutation-negative HM cases, we identified rare variants in the CACNA1I gene encoding the T-type calcium channel Cav3.3. Burden testing of CACNA1I variants showed a statistically significant increase in allelic burden in the HM case group compared to gnomAD (OR = 2.30, P = 0.00005) and the UK Biobank (OR = 2.32, P = 0.0004) databases. Dysfunction in T-type calcium channels, including Cav3.3, has been implicated in a range of neurological conditions, suggesting a potential role in HM. Using patch-clamp electrophysiology, we compared the biophysical properties of five Cav3.3 variants (p.R111G, p.M128L, p.D302G, p.R307H, and p.Q1158H) to wild-type (WT) channels expressed in HEK293T cells. We observed numerous functional alterations across the channels with Cav3.3-Q1158H showing the greatest differences compared to WT channels, including reduced current density, right-shifted voltage dependence of activation and inactivation, and slower current kinetics. Interestingly, we also found significant differences in the conductance properties exhibited by the Cav3.3-R307H and -Q1158H variants compared to WT channels under conditions of acidosis and alkalosis. In light of these data, we suggest that rare variants in CACNA1I may contribute to HM etiology.

8.
Adv Sci (Weinh) ; 8(21): e2102354, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486248

RESUMO

Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Interface Usuário-Computador , Linhagem Celular , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Nociceptores/citologia , Nociceptores/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
9.
Ann Neurol ; 90(2): 193-202, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184781

RESUMO

OBJECTIVE: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193-202.


Assuntos
Cefaleia Histamínica/epidemiologia , Cefaleia Histamínica/genética , Loci Gênicos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Estudos de Casos e Controles , Cefaleia Histamínica/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Suécia/epidemiologia , Reino Unido/epidemiologia
10.
Genome Res ; 31(6): 1069-1081, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34011578

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a widely used method for identifying cell types and trajectories in biologically heterogeneous samples, but it is limited in its detection and quantification of lowly expressed genes. This results in missing important biological signals, such as the expression of key transcription factors (TFs) driving cellular differentiation. We show that targeted sequencing of ∼1000 TFs (scCapture-seq) in iPSC-derived neuronal cultures greatly improves the biological information garnered from scRNA-seq. Increased TF resolution enhanced cell type identification, developmental trajectories, and gene regulatory networks. This allowed us to resolve differences among neuronal populations, which were generated in two different laboratories using the same differentiation protocol. ScCapture-seq improved TF-gene regulatory network inference and thus identified divergent patterns of neurogenesis into either excitatory cortical neurons or inhibitory interneurons. Furthermore, scCapture-seq revealed a role for of retinoic acid signaling in the developmental divergence between these different neuronal populations. Our results show that TF targeting improves the characterization of human cellular models and allows identification of the essential differences between cellular populations, which would otherwise be missed in traditional scRNA-seq. scCapture-seq TF targeting represents a cost-effective enhancement of scRNA-seq, which could be broadly applied to improve scRNA-seq resolution.


Assuntos
Células-Tronco Pluripotentes Induzidas , Análise de Célula Única , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Cereb Blood Flow Metab ; 41(9): 2423-2438, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33730931

RESUMO

The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.


Assuntos
Transtornos Cerebrovasculares/fisiopatologia , Matriz Extracelular/fisiologia , Proteômica/métodos , Adulto , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
12.
Mol Psychiatry ; 26(9): 5252-5265, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32404948

RESUMO

Bipolar disorder is a chronic neuropsychiatric condition associated with mood instability, where patients present significant sleep and circadian rhythm abnormalities. Currently, the pathophysiology of bipolar disorder remains elusive, but treatment with lithium continues as the benchmark pharmacotherapy, functioning as a potent mood stabilizer in most, but not all patients. Lithium is well documented to induce period lengthening and amplitude enhancement of the circadian clock. Based on this, we sought to investigate whether lithium differentially impacts circadian rhythms in bipolar patient cell lines and crucially if lithium's effect on the clock is fundamental to its mood-stabilizing effects. We analyzed the circadian rhythms of bipolar patient-derived fibroblasts (n = 39) and their responses to lithium and three further chronomodulators. Here we show, relative to controls (n = 23), patients exhibited a wider distribution of circadian period (p < 0.05), and that patients with longer periods were medicated with a wider range of drugs, suggesting lower effectiveness of lithium. In agreement, patient fibroblasts with longer periods displayed muted circadian responses to lithium as well as to other chronomodulators that phenocopy lithium. These results show that lithium differentially impacts the circadian system in a patient-specific manner and its effect is dependent on the patient's circadian phenotype. We also found that lithium-induced behavioral changes in mice were phenocopied by modulation of the circadian system with drugs that target the clock, and that a dysfunctional clock ablates this response. Thus, chronomodulatory compounds offer a promising route to a novel treatment paradigm. These findings, upon larger-scale validation, could facilitate the implementation of a personalized approach for mood stabilization.


Assuntos
Transtorno Bipolar , Lítio , Animais , Transtorno Bipolar/tratamento farmacológico , Ritmo Circadiano , Fibroblastos , Humanos , Compostos de Lítio/farmacologia , Camundongos
13.
Prog Brain Res ; 255: 403-418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33008515

RESUMO

Migraine is a highly heritable complex brain disorder, imposing a huge burden of disability on sufferers. The genetic architecture of migraine ranges from the rare Mendelian forms whereby a single gene mutation is sufficient to cause disease to gene variants that individually impart only a small increase in migraine risk. Despite the considerable advances in the last decade, there are significant challenges to translate genetic findings into drug targets and eventually successful treatments. The need for such treatments remains, even with the new wave of biological therapies targeting CGRP or the CGRP receptor. This will require integration of genetic data with new technologies such as human stem cell models of migraine that allow the interpretation of genetic risk into disease relevant cellular phenotypes. This was recently undertaken for the first time in migraine, whereby stem cells from patients with the rare TRESK frameshift mutation converted into pain sensory neurons demonstrated hyper-excitability. The continued study of the molecular basis of migraine thus offers new paths to drug targets and precision medicine approaches.


Assuntos
Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/genética , Medicina de Precisão , Humanos
14.
Nat Commun ; 11(1): 4614, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929069

RESUMO

The suprachiasmatic nucleus (SCN) is a complex structure dependent upon multiple mechanisms to ensure rhythmic electrical activity that varies between day and night, to determine circadian adaptation and behaviours. SCN neurons are exposed to glutamate from multiple sources including from the retino-hypothalamic tract and from astrocytes. However, the mechanism preventing inappropriate post-synaptic glutamatergic effects is unexplored and unknown. Unexpectedly we discovered that TRESK, a calcium regulated two-pore potassium channel, plays a crucial role in this system. We propose that glutamate activates TRESK through NMDA and AMPA mediated calcium influx and calcineurin activation to then oppose further membrane depolarisation and rising intracellular calcium. Hence, in the absence of TRESK, glutamatergic activity is unregulated leading to membrane depolarisation, increased nocturnal SCN firing, inverted basal calcium levels and impaired sensitivity in light induced phase delays. Our data reveals TRESK plays an essential part in SCN regulatory mechanisms and light induced adaptive behaviours.


Assuntos
Adaptação Ocular , Escuridão , Canais de Potássio/metabolismo , Núcleo Supraquiasmático/fisiologia , Animais , Comportamento Animal , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Luz , Potenciais da Membrana/efeitos da radiação , Camundongos Endogâmicos C57BL , Canais de Potássio/deficiência , Transdução de Sinais/efeitos da radiação , Núcleo Supraquiasmático/efeitos da radiação
15.
RNA Biol ; 17(12): 1741-1753, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32597303

RESUMO

RNA-seq is the standard method for profiling gene expression in many biological systems. Due to the wide dynamic range and complex nature of the transcriptome, RNA-seq provides an incomplete characterization, especially of lowly expressed genes and transcripts. Targeted RNA sequencing (RNA CaptureSeq) focuses sequencing on genes of interest, providing exquisite sensitivity for transcript detection and quantification. However, uses of CaptureSeq have focused on bulk samples and its performance on very small populations of cells is unknown. Here we show CaptureSeq greatly enhances transcriptomic profiling of target genes in ultra-low-input samples and provides equivalent performance to that on bulk samples. We validate the performance of CaptureSeq using multiple probe sets on samples of iPSC-derived cortical neurons. We demonstrate up to 275-fold enrichment for target genes, the detection of 10% additional genes and a greater than 5-fold increase in identified gene isoforms. Analysis of spike-in controls demonstrated CaptureSeq improved both detection sensitivity and expression quantification. Comparison to the CORTECON database of cerebral cortex development revealed CaptureSeq enhanced the identification of sample differentiation stage. CaptureSeq provides sensitive, reliable and quantitative expression measurements on hundreds-to-thousands of target genes from ultra-low-input samples and has the potential to greatly enhance transcriptomic profiling when samples are limiting.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Transcriptoma , Diferenciação Celular/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo
16.
Pain ; 161(7): 1542-1554, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32107361

RESUMO

ABSTARCT: The dorsal root ganglia (DRG) are key structures in nociception and chronic pain disorders. Several gene expression studies of DRG in preclinical pain models have been performed, but it is unclear if consistent gene changes are identifiable. We, therefore, compared several recent RNA-Seq data sets on the whole DRG in rodent models of nerve injury. Contrary to previous findings, we show hundreds of common differentially expressed genes and high positive correlation between studies, despite model and species differences. We also find, in contrast to previous studies, that 60% of the common rodent gene response after injury is likely to occur in nociceptors of the DRG. Substantial expression changes are observed at a 1-week time-point, with smaller changes in the same genes at a later 3- to 4-week time-point. However, a subset of genes shows a similar magnitude of changes at both early and late time-points, suggesting their potential involvement in the maintenance of chronic pain. These genes are centred around suppression of endogenous opioid signalling. Reversal of this suppression could allow endogenous and exogenous opioids to exert their analgesic functions and may be an important strategy for treating chronic pain disorders. Currently used drugs, such as amitriptyline and duloxetine, do not seem to appropriately modulate many of the critical pain genes and indeed may transcriptionally suppress endogenous opioid signalling further.


Assuntos
Neuralgia , Cloridrato de Duloxetina , Gânglios Espinais , Humanos , Neuralgia/genética , Nociceptores , Transdução de Sinais
17.
Epilepsy Behav ; 101(Pt B): 106581, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31761686

RESUMO

Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by deletions in the TSC1 or TSC2 genes that is associated with epilepsy in up to 90% of patients. Seizures are suggested to start in benign brain tumors, cortical tubers, or in the perituberal tissue making these tubers an interesting target for further research into mechanisms underlying epileptogenesis in TSC. Animal models of TSC insufficiently capture the neurodevelopmental biology of cortical tubers, and hence, human stem cell-based in vitro models of TSC are being increasingly explored in attempts to recapitulate tuber development and epileptogenesis in TSC. However, in vitro culture conditions for stem cell-derived neurons do not necessarily mimic physiological conditions. For example, very high glucose concentrations of up to 25 mM are common in culture media formulations. As TSC is potentially caused by a disruption of the mechanistic target of rapamycin (mTOR) pathway, a main integrator of metabolic information and intracellular signaling, we aimed to examine the impact of different glucose concentrations in the culture media on cellular phenotypes implicated in tuber characteristics. Here, we present preliminary data from a pilot study exploring cortical neuronal differentiation on human embryonic stem cells (hES) harboring a TSC2 knockout mutation (TSC2-/-) and an isogenic control line (TSC2+/+). We show that the commonly used high glucose media profoundly mask cellular phenotypes in TSC2-/- cultures during neuronal differentiation. These phenotypes only become apparent when differentiating TSC2+/+ and TSC2-/- cultures in more physiologically relevant conditions of 5 mM glucose suggesting that the careful consideration of culture conditions is vital to ensuring biological relevance and translatability of stem cell models for neurological disorders such as TSC. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Assuntos
Glucose/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/ultraestrutura , Esclerose Tuberosa/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/ultraestrutura , Técnicas de Inativação de Genes , Humanos , Modelos Neurológicos , Mutação/efeitos dos fármacos , Neurogênese , Fenótipo , Projetos Piloto , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética
18.
Brain ; 142(12): 3852-3867, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742594

RESUMO

The two-pore potassium channel, TRESK has been implicated in nociception and pain disorders. We have for the first time investigated TRESK function in human nociceptive neurons using induced pluripotent stem cell-based models. Nociceptors from migraine patients with the F139WfsX2 mutation show loss of functional TRESK at the membrane, with a corresponding significant increase in neuronal excitability. Furthermore, using CRISPR-Cas9 engineering to correct the F139WfsX2 mutation, we show a reversal of the heightened neuronal excitability, linking the phenotype to the mutation. In contrast we find no change in excitability in induced pluripotent stem cell derived nociceptors with the C110R mutation and preserved TRESK current; thereby confirming that only the frameshift mutation is associated with loss of function and a migraine relevant cellular phenotype. We then demonstrate the importance of TRESK to pain states by showing that the TRESK activator, cloxyquin, can reduce the spontaneous firing of nociceptors in an in vitro human pain model. Using the chronic nitroglycerine rodent migraine model, we demonstrate that mice lacking TRESK develop exaggerated nitroglycerine-induced mechanical and thermal hyperalgesia, and furthermore, show that cloxyquin conversely is able to prevent sensitization. Collectively, our findings provide evidence for a role of TRESK in migraine pathogenesis and its suitability as a therapeutic target.


Assuntos
Mutação com Perda de Função , Transtornos de Enxaqueca/genética , Nociceptividade/fisiologia , Nociceptores/metabolismo , Canais de Potássio/genética , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Nitroglicerina , Medição da Dor , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo
19.
Front Mol Neurosci ; 12: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379497

RESUMO

Two-pore domain K+ (K2P) channels generate K+ leak current, which serves a vital role in controlling and modulating neuronal excitability. This diverse family of K+ channels exhibit distinct expression and function across neuronal tissues. TWIK-related spinal cord K+ channel (TRESK) is a K2P channel with a particularly enriched role in sensory neurons and in vivo pain pathways. Here, we explored the role of TRESK across molecularly distinct sensory neuron populations and assessed its contribution to different sensory modalities. We found TRESK mRNA only in select populations of C- and A-δ nociceptors, in addition to low threshold D-hair afferents. Neurons from mice in which TRESK has been ablated demonstrated marked hyperexcitability, which was amplified under inflammatory challenge. Detailed behavioral phenotyping of TRESK knockout mice revealed specific deficits in somatosensory processing of noxious and non-noxious stimuli. These results demonstrate novel roles of TRESK in somatosensory processing and offer important information to those wishing to target the channel for therapeutic means.

20.
J Biol Chem ; 294(17): 7085-7097, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30872401

RESUMO

The cellular prion protein (PrPC) is a key neuronal receptor for ß-amyloid oligomers (AßO), mediating their neurotoxicity, which contributes to the neurodegeneration in Alzheimer's disease (AD). Similarly to the amyloid precursor protein (APP), PrPC is proteolytically cleaved from the cell surface by a disintegrin and metalloprotease, ADAM10. We hypothesized that ADAM10-modulated PrPC shedding would alter the cellular binding and cytotoxicity of AßO. Here, we found that in human neuroblastoma cells, activation of ADAM10 with the muscarinic agonist carbachol promotes PrPC shedding and reduces the binding of AßO to the cell surface, which could be blocked with an ADAM10 inhibitor. Conversely, siRNA-mediated ADAM10 knockdown reduced PrPC shedding and increased AßO binding, which was blocked by the PrPC-specific antibody 6D11. The retinoic acid receptor analog acitretin, which up-regulates ADAM10, also promoted PrPC shedding and decreased AßO binding in the neuroblastoma cells and in human induced pluripotent stem cell (iPSC)-derived cortical neurons. Pretreatment with acitretin abolished activation of Fyn kinase and prevented an increase in reactive oxygen species caused by AßO binding to PrPC Besides blocking AßO binding and toxicity, acitretin also increased the nonamyloidogenic processing of APP. However, in the iPSC-derived neurons, Aß and other amyloidogenic processing products did not exhibit a reciprocal decrease upon acitretin treatment. These results indicate that by promoting the shedding of PrPC in human neurons, ADAM10 activation prevents the binding and cytotoxicity of AßO, revealing a potential therapeutic benefit of ADAM10 activation in AD.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biopolímeros/metabolismo , Proteínas de Membrana/metabolismo , Proteína ADAM10/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Linhagem Celular Tumoral , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/genética , Proteínas Priônicas/metabolismo , Ligação Proteica , Proteólise , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA