Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6601): eabk2820, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771912

RESUMO

Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce "synthetic regulatory reconstitution," a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio , Animais , Padronização Corporal/genética , Elementos Facilitadores Genéticos , Genoma , Proteínas de Homeodomínio/genética , Camundongos , Ratos , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649239

RESUMO

Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Loci Gênicos , Genoma Humano , Células-Tronco Embrionárias Humanas , Células-Tronco Embrionárias Murinas , Animais , Linhagem Celular , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA