Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865090

RESUMO

CDC7 kinase is crucial for DNA replication initiation and is involved in fork processing and replication stress response. Human CDC7 requires the binding of either DBF4 or DRF1 for its activity. However, it is unclear whether the two regulatory subunits target CDC7 to a specific set of substrates, thus having different biological functions, or if they act redundantly. Using genome editing technology, we generated isogenic cell lines deficient in either DBF4 or DRF1: these cells are viable but present signs of genomic instability, indicating that both can independently support CDC7 for bulk DNA replication. Nonetheless, DBF4-deficient cells show altered replication efficiency, partial deficiency in MCM helicase phosphorylation, and alterations in the replication timing of discrete genomic regions. Notably, we find that CDC7 function at replication forks is entirely dependent on DBF4 and not on DRF1. Thus, DBF4 is the primary regulator of CDC7 activity, mediating most of its functions in unperturbed DNA replication and upon replication interference.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas Serina-Treonina Quinases , Replicação do DNA/genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fosforilação , Instabilidade Genômica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA
2.
EMBO Rep ; 24(12): e57585, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37965896

RESUMO

Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.


Assuntos
Replicação do DNA , Proteínas de Ligação ao GTP , Humanos , Proteínas de Ligação ao GTP/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dano ao DNA , DNA
3.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445805

RESUMO

Over the last decade, CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have emerged as promising anticancer drugs. Numerous studies have demonstrated that CDK4/6 inhibitors efficiently block the pRb-E2F pathway and induce cell cycle arrest in pRb-proficient cells. Based on these studies, the inhibitors have been approved by the FDA for treatment of advanced hormonal receptor (HR) positive breast cancers in combination with hormonal therapy. However, some evidence has recently shown unexpected effects of the inhibitors, underlining a need to characterize the effects of CDK4/6 inhibitors beyond pRb. Our study demonstrates how palbociclib impairs origin firing in the DNA replication process in pRb-deficient cell lines. Strikingly, despite the absence of pRb, cells treated with palbociclib synthesize less DNA while showing no cell cycle arrest. Furthermore, this CDK4/6 inhibitor treatment disturbs the temporal program of DNA replication and reduces the density of replication forks. Cells treated with palbociclib show a defect in the loading of the Pre-initiation complex (Pre-IC) proteins on chromatin, indicating a reduced initiation of DNA replication. Our findings highlight hidden effects of palbociclib on the dynamics of DNA replication and of its cytotoxic consequences on cell viability in the absence of pRb. This study provides a potential therapeutic application of palbociclib in combination with other drugs to target genomic instability in pRB-deficient cancers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Origem de Replicação , Inibidores de Proteínas Quinases/uso terapêutico , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Neoplasias da Mama/tratamento farmacológico , Proteínas Inibidoras de Quinase Dependente de Ciclina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
EMBO J ; 40(21): e104543, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34533226

RESUMO

The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult-to-replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l-deficient cells are compromised in the repair of heterochromatin-associated double-stranded breaks, eliciting deletions in late-replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair-associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Heterocromatina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células , Homólogo 5 da Proteína Cromobox/genética , Homólogo 5 da Proteína Cromobox/metabolismo , Instabilidade Cromossômica , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Heterocromatina/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Transdução de Sinais
5.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066960

RESUMO

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


Assuntos
Período de Replicação do DNA , Estresse Fisiológico , Afidicolina/farmacologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Dano ao DNA , Período de Replicação do DNA/genética , Epigênese Genética/efeitos dos fármacos , Loci Gênicos , Código das Histonas , Humanos , Modelos Biológicos , Estresse Fisiológico/genética
6.
Sci Rep ; 11(1): 13195, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162976

RESUMO

Chromatin organization within the nuclear volume is essential to regulate many aspects of its function and to safeguard its integrity. A key player in this spatial scattering of chromosomes is the nuclear envelope (NE). The NE tethers large chromatin domains through interaction with the nuclear lamina and other associated proteins. This organization is perturbed in cells from Hutchinson-Gilford progeria syndrome (HGPS), a genetic disorder characterized by premature aging features. Here, we show that HGPS-related lamina defects trigger an altered 3D telomere organization with increased contact sites between telomeres and the nuclear lamina, and an altered telomeric chromatin state. The genome-wide replication timing signature of these cells is perturbed, with a shift to earlier replication for regions that normally replicate late. As a consequence, we detected a higher density of replication forks traveling simultaneously on DNA fibers, which relies on limiting cellular dNTP pools to support processive DNA synthesis. Remarkably, increasing dNTP levels in HGPS cells rescued fragile telomeres, and improved the replicative capacity of the cells. Our work highlights a functional connection between NE dysfunction and telomere homeostasis in the context of premature aging.


Assuntos
Cromatina/ultraestrutura , Desoxirribonucleotídeos/metabolismo , Lamina Tipo A/fisiologia , Lâmina Nuclear/patologia , Progéria/genética , Homeostase do Telômero/genética , Telômero/patologia , Adulto , Animais , Células Cultivadas , Senescência Celular/genética , Dano ao DNA , Replicação do DNA , Fibroblastos , Genes Reporter , Proteínas de Fluorescência Verde , Código das Histonas , Humanos , Recém-Nascido , Lamina Tipo A/análise , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Lamina Tipo B/análise , Camundongos , Camundongos Knockout , Progéria/patologia , Proteínas Recombinantes de Fusão/metabolismo , Pele/patologia
7.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946274

RESUMO

The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.


Assuntos
Replicação do DNA , Instabilidade Genômica , Animais , Ciclo Celular , Epigênese Genética , Humanos , Mutação , Neoplasias/genética
8.
NAR Genom Bioinform ; 2(2): lqaa045, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575597

RESUMO

DNA replication must be faithful and follow a well-defined spatiotemporal program closely linked to transcriptional activity, epigenomic marks, intranuclear structures, mutation rate and cell fate determination. Among the readouts of the spatiotemporal program of DNA replication, replication timing analyses require not only complex and time-consuming experimental procedures, but also skills in bioinformatics. We developed a dedicated Shiny interactive web application, the START-R (Simple Tool for the Analysis of the Replication Timing based on R) suite, which analyzes DNA replication timing in a given organism with high-throughput data. It reduces the time required for generating and analyzing simultaneously data from several samples. It automatically detects different types of timing regions and identifies significant differences between two experimental conditions in ∼15 min. In conclusion, START-R suite allows quick, efficient and easier analyses of DNA replication timing for all organisms. This novel approach can be used by every biologist. It is now simpler to use this method in order to understand, for example, whether 'a favorite gene or protein' has an impact on replication process or, indirectly, on genomic organization (as Hi-C experiments), by comparing the replication timing profiles between wild-type and mutant cell lines.

9.
Nat Commun ; 9(1): 1590, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686321

RESUMO

Chromatin is the template for the basic processes of replication and transcription, making the maintenance of chromosomal integrity critical for cell viability. To elucidate how dividing cells respond to alterations in chromatin structure, here we analyse the replication programme of primary cells with altered chromatin configuration caused by the genetic ablation of the HMGB1 gene, or three histone H1 genes. We find that loss of chromatin compaction in H1-depleted cells triggers the accumulation of stalled forks and DNA damage as a consequence of transcription-replication conflicts. In contrast, reductions in nucleosome occupancy due to the lack of HMGB1 cause faster fork progression without impacting the initiation landscape or fork stability. Thus, perturbations in chromatin integrity elicit a range of responses in the dynamics of DNA replication and transcription, with different consequences on replicative stress. These findings have broad implications for our understanding of how defects in chromatin structure contribute to genomic instability.


Assuntos
Cromatina/química , Replicação do DNA/fisiologia , Conformação Molecular , Transcrição Gênica/fisiologia , Animais , Cromatina/fisiologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Fibroblastos , Instabilidade Genômica/fisiologia , Células HCT116 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Nucleossomos/metabolismo , Cultura Primária de Células
10.
Aging (Albany NY) ; 9(12): 2695-2716, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29283884

RESUMO

High proliferation rate and high mutation density are both indicators of poor prognosis in adrenocortical carcinomas. We performed a hypothesis-driven association study between clinical features in adrenocortical carcinomas and the expression levels of 136 genes involved in DNA metabolism and G1/S phase transition. In 79 samples downloaded from The Cancer Genome Atlas portal, high Cyclin Dependent Kinase 6 (CDK6) mRNA levels gave the most significant association with shorter time to relapse and poorer survival of patients. A hierarchical clustering approach assembled most tumors with high levels of CDK6 mRNA into one group. These tumors tend to cumulate mutations activating the Wnt/ß-catenin pathway and show reduced MIR506 expression. Actually, the level of MIR506 RNA is inversely correlated with the levels of both CDK6 and CTNNB1 (encoding ß-catenin). Together these results indicate that high CDK6 expression is found in aggressive tumors with activated Wnt/ß-catenin pathway. Thus we tested the impact of Food and Drug Administration-approved CDK4 and CDK6 inhibitors, namely palbociclib and ribociclib, on SW-13 and NCI-H295R cells. While both drugs reduced viability and induced senescence in SW-13 cells, only palbociclib was effective on the retinoblastoma protein (pRB)-negative NCI-H295R cells, by inducing apoptosis. In NCI-H295R cells, palbociclib induced an increase of the active form of Glycogen Synthase Kinase 3ß (GSK3ß) responsible for the reduced amount of active ß-catenin, and altered the amount of AXIN2 mRNA. Taken together, these data underline the impact of CDK4 and CDK6 inhibitors in treating adrenocortical carcinomas.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Piperazinas/farmacologia , Piridinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transcriptoma
11.
EMBO J ; 36(18): 2726-2741, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778956

RESUMO

Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.


Assuntos
Replicação do DNA , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Metilação
12.
Genom Data ; 9: 113-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27508120

RESUMO

During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14), Cayrou et al. (2011 Sep), Picard et al. (2014 May 1) [1], [2], [3]), and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9), Pope et al. (2014 Nov 20) [5], [6]). On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb) [7], [8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16) [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308), RKO (GSM2111309), HEK 293T (GSM2111310), HeLa (GSM2111311), MRC5-SV (GSM2111312) and K562 (GSM2111313). A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines.

13.
Genom Data ; 3: 90-3, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26484154

RESUMO

The physiological function of the human DNA polymerase θ (pol θ) is still unclear despite its in vitro translesion synthesis capacity during DNA damage repair process. However this DNA polymerase is always present along the cell cycle in the absence of replication stress and DNA damage. Is there a different molecular function? We present the genomic data of replication timing in depleted pol θ cells (GSE49693) and in cells overexpressing pol θ (GSE53070) indicating that Pol θ holds a novel role in the absence of external stress as a critical determinant of the replication timing program in human cells.

14.
Nat Commun ; 5: 4285, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24989122

RESUMO

Although DNA polymerase θ (Pol θ) is known to carry out translesion synthesis and has been implicated in DNA repair, its physiological function under normal growth conditions remains unclear. Here we present evidence that Pol θ plays a role in determining the timing of replication in human cells. We find that Pol θ binds to chromatin during early G1, interacts with the Orc2 and Orc4 components of the Origin recognition complex and that the association of Mcm proteins with chromatin is enhanced in G1 when Pol θ is downregulated. Pol θ-depleted cells exhibit a normal density of activated origins in S phase, but early-to-late and late-to-early shifts are observed at a number of replication domains. Pol θ overexpression, on the other hand, causes delayed replication. Our results therefore suggest that Pol θ functions during the earliest steps of DNA replication and influences the timing of replication initiation.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fase G1 , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Fase S , DNA Polimerase teta
15.
PLoS Genet ; 10(5): e1004282, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24785686

RESUMO

The duplication of mammalian genomes is under the control of a spatiotemporal program that orchestrates the positioning and the timing of firing of replication origins. The molecular mechanisms coordinating the activation of about [Formula: see text] predicted origins remain poorly understood, partly due to the intrinsic rarity of replication bubbles, making it difficult to purify short nascent strands (SNS). The precise identification of origins based on the high-throughput sequencing of SNS constitutes a new methodological challenge. We propose a new statistical method with a controlled resolution, adapted to the detection of replication origins from SNS data. We detected an average of 80,000 replication origins in different cell lines. To evaluate the consistency between different protocols, we compared SNS detections with bubble trapping detections. This comparison demonstrated a good agreement between genome-wide methods, with 65% of SNS-detected origins validated by bubble trapping, and 44% of bubble trapping origins validated by SNS origins, when compared at the same resolution. We investigated the interplay between the spatial and the temporal programs of replication at fine scales. We show that most of the origins detected in regions replicated in early S phase are shared by all the cell lines investigated whereas cell-type-specific origins tend to be replicated in late S phase. We shed a new light on the key role of CpG islands, by showing that 80% of the origins associated with CGIs are constitutive. Our results further show that at least 76% of CGIs are origins of replication. The analysis of associations with chromatin marks at different timing of cell division revealed new potential epigenetic regulators driving the spatiotemporal activity of replication origins. We highlight the potential role of H4K20me1 and H3K27me3, the coupling of which is correlated with increased efficiency of replication origins, clearly identifying those marks as potential key regulators of replication origins.


Assuntos
Cromatina/genética , Replicação do DNA , Linhagem Celular , Humanos
16.
PLoS Biol ; 10(3): e1001277, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412349

RESUMO

The nuclear genomes of vertebrates show a highly organized program of DNA replication where GC-rich isochores are replicated early in S-phase, while AT-rich isochores are late replicating. GC-rich regions are gene dense and are enriched for active transcription, suggesting a connection between gene regulation and replication timing. Insulator elements can organize independent domains of gene transcription and are suitable candidates for being key regulators of replication timing. We have tested the impact of inserting a strong replication origin flanked by the ß-globin HS4 insulator on the replication timing of naturally late replicating regions in two different avian cell types, DT40 (lymphoid) and 6C2 (erythroid). We find that the HS4 insulator has the capacity to impose a shift to earlier replication. This shift requires the presence of HS4 on both sides of the replication origin and results in an advance of replication timing of the target locus from the second half of S-phase to the first half when a transcribed gene is positioned nearby. Moreover, we find that the USF transcription factor binding site is the key cis-element inside the HS4 insulator that controls replication timing. Taken together, our data identify a combination of cis-elements that might constitute the basic unit of multi-replicon megabase-sized early domains of DNA replication.


Assuntos
Replicação do DNA , Elementos Isolantes , Origem de Replicação , Fatores Estimuladores Upstream/metabolismo , Acetilação , Alelos , Animais , Sítios de Ligação , Linhagem Celular , Galinhas/genética , Galinhas/metabolismo , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , DNA/genética , DNA/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Histonas/genética , Histonas/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Mutagênese Insercional , Fase S , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional , Transfecção , Transgenes , Fatores Estimuladores Upstream/genética , Globinas beta/genética , Globinas beta/metabolismo
17.
Chromosome Res ; 18(1): 79-89, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19921448

RESUMO

Genome integrity depends upon a highly co-ordinated process that ensures the exact duplication of the genome at each cell cycle. Genomic mapping of DNA replication starting points in mammals, known as origins of replication, is an important step towards our understanding of how this essential mechanism is regulated throughout complex genomes. Two recent studies carried out in both human and mouse cells have revealed a strong association between replication origins and transcriptional regulatory elements. This strong overlap raises the question of how gene deserts, also lacking replication origins, are properly replicated in conditions where replication is disrupted. It also provides valuable information forward the identification of key regulatory factors of DNA replication initiation. Here, we review what these large-scale mappings of replication origins have brought to our understanding of replication initiation and what are the future prospects.


Assuntos
Genoma , Origem de Replicação , Animais , Humanos , Camundongos , Fatores de Transcrição/metabolismo
18.
Mol Biol Evol ; 26(4): 729-41, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19126867

RESUMO

Assessment of the impact of DNA replication on genome architecture in Eukaryotes has long been hampered by the scarcity of experimental data. Recent work, relying on computational predictions of origins of replication, suggested that replication might be a major determinant of gene organization in human (Huvet et al. 2007. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17:1278-1285). Here, we address this question by analyzing the first large-scale data set of experimentally determined origins of replication in human: 283 origins identified in HeLa cells, in 1% of the genome covered by ENCODE regions (Cadoret et al. 2008. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA. 105:15837-15842). We show that origins of replication are not randomly distributed as they display significant overlap with promoter regions and CpG islands. The hypothesis of a selective pressure to avoid frontal collisions between replication and transcription polymerases is not supported by experimental data as we find no evidence for gene orientation bias in the proximity of origins of replication. The lack of a significant orientation bias remains manifest even when considering only genes expressed at a high rate, or in a wide number of tissues, and is not affected by the regional replication timing. Gene expression breadth does not appear to be correlated with the distance from the origins of replication. We conclude that the impact of DNA replication on human genome organization is considerably weaker than previously proposed.


Assuntos
Replicação do DNA , Genoma Humano , Humanos , Regiões Promotoras Genéticas , Origem de Replicação , Transcrição Gênica
19.
Proc Natl Acad Sci U S A ; 105(41): 15837-42, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18838675

RESUMO

To get insights into the regulation of replication initiation, we systematically mapped replication origins along 1% of the human genome in HeLa cells. We identified 283 origins, 10 times more than previously known. Origin density is strongly correlated with genomic landscapes, with clusters of closely spaced origins in GC-rich regions and no origins in large GC-poor regions. Origin sequences are evolutionarily conserved, and half of them map within or near CpG islands. Most of the origins overlap transcriptional regulatory elements, providing further evidence of a connection with gene regulation. Moreover, we identify c-JUN and c-FOS as important regulators of origin selection. Half of the identified replication initiation sites do not have an open chromatin configuration, showing the absence of a direct link with gene regulation. Replication timing analyses coupled with our origin mapping suggest that a relatively strict origin-timing program regulates the replication of the human genome.


Assuntos
Regulação da Expressão Gênica , Genoma Humano/genética , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Origem de Replicação/genética , Cromatina , Ilhas de CpG , Genômica , Células HeLa , Humanos , Elementos Reguladores de Transcrição
20.
J Biol Chem ; 280(40): 33935-44, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16096278

RESUMO

Cyclic nucleotides cAMP and cGMP are ubiquitous signaling molecules that mediate many adaptative responses in eukaryotic cells. Cyanobacteria present the peculiarity among the prokaryotes of having the two types of cyclic nucleotide. Cellular homeostasis requires both cyclases (adenylyl/guanylyl, for their synthesis) and phosphodiesterases (for their degradation). Fully segregated null mutants have been obtained for the two genes, sll1624 and slr2100, which encode putative cNMP phosphodiesterases. We present physiological evidence that the Synechocystis PCC 6803 open reading frame slr2100 could be a cGMP phosphodiesterase. In addition, we show that Slr2100, but not Sll1624, is required for the adaptation of the cells to a UV-B stress. UV-B radiation has deleterious effects for photosynthetic organisms, in particular on the photosystem II, through damaging the protein structure of the reaction center. Using biophysical and biochemical approaches, it was found that Slr2100 is involved in the signal transduction events which permit the repair of the UV-B-damaged photosystem II. This was confirmed by quantitative reverse transcriptase-PCR analyses. Altogether, the data point to an important role for cGMP in signal transduction and photoacclimation processes during a UV-B stress.


Assuntos
AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Synechocystis/genética , Synechocystis/fisiologia , Raios Ultravioleta/efeitos adversos , Adaptação Fisiológica , Dano ao DNA , Reparo do DNA , Homeostase , Fases de Leitura Aberta , Diester Fosfórico Hidrolases , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA