Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Yeast ; 37(1): 173-185, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770454

RESUMO

Cation/proton antiporters play a major role in the control of cytosolic ion concentrations in prokaryotes and eukaryotes organisms. In yeast, we previously demonstrated that Vnx1p is a vacuolar monovalent cation/H+ exchanger showing Na+ /H+ and K+ /H+ antiporter activity. We have also shown that disruption of VNX1 results in an almost complete abolishment of vacuolar Na+ /H+ exchange, but yeast cells overexpressing the complete protein do not show improved salinity tolerance. In this study, we have identified an autoinhibitory N-terminal domain and have engineered a constitutively activated version of Vnx1p, by removing this domain. Contrary to the wild type protein, the activated protein has a pronounced effect on yeast salt tolerance and vacuolar pH. Expression of this truncated VNX1 gene also improves Arabidopsis salt tolerance and increases Na+ and K+ accumulation of salt grown plants thus suggesting a biotechnological potential of activated Vnx1p to improve salt tolerance of crop plants.


Assuntos
Arabidopsis/fisiologia , Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Arabidopsis/genética , Plantas Geneticamente Modificadas/fisiologia , Potássio/metabolismo , Saccharomyces cerevisiae/genética , Sódio/metabolismo , Vacúolos/metabolismo
2.
Genome Announc ; 6(11)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545303

RESUMO

Thraustochytrids are ecologically and biotechnologically relevant marine species. We report here the de novo assembly and annotation of the whole-genome sequence of a new thraustochytrid strain, CCAP_4062/3. The genome size was estimated at 38.7 Mb with 11,853 predicted coding sequences, and the GC content was scored at 57%.

3.
Plant Physiol ; 172(1): 441-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443603

RESUMO

It is well established that thylakoid membranes of chloroplasts convert light energy into chemical energy, yet the development of chloroplast and thylakoid membranes is poorly understood. Loss of function of the two envelope K(+)/H(+) antiporters AtKEA1 and AtKEA2 was shown previously to have negative effects on the efficiency of photosynthesis and plant growth; however, the molecular basis remained unclear. Here, we tested whether the previously described phenotypes of double mutant kea1kea2 plants are due in part to defects during early chloroplast development in Arabidopsis (Arabidopsis thaliana). We show that impaired growth and pigmentation is particularly evident in young expanding leaves of kea1kea2 mutants. In proliferating leaf zones, chloroplasts contain much lower amounts of photosynthetic complexes and chlorophyll. Strikingly, AtKEA1 and AtKEA2 proteins accumulate to high amounts in small and dividing plastids, where they are specifically localized to the two caps of the organelle separated by the fission plane. The unusually long amino-terminal domain of 550 residues that precedes the antiport domain appears to tether the full-length AtKEA2 protein to the two caps. Finally, we show that the double mutant contains 30% fewer chloroplasts per cell. Together, these results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Homeostase , Concentração de Íons de Hidrogênio , Immunoblotting , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Osmose , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/ultraestrutura , Antiportadores de Potássio-Hidrogênio/classificação , Antiportadores de Potássio-Hidrogênio/genética , Tilacoides/química , Tilacoides/metabolismo
4.
Plant Cell Environ ; 36(12): 2135-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23550888

RESUMO

The endosomal LeNHX2 ion transporter exchanges H(+) with K(+) and, to lesser extent, Na(+) . Here, we investigated the response to NaCl supply and K(+) deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K(+) the opposite was found. Analysis of mineral composition showed a higher K(+) content in roots, shoots and xylem sap of transgenic plants and no differences in Na(+) content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na(+)/H(+) and, above all, K(+)/H(+) transport activity in root intracellular membrane vesicles. Under K(+) limiting conditions, transgenic plants enhanced root expression of the high-affinity K(+) uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K(+) depletion rates and half cytosolic K(+) activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K(+) and lower cytosolic K(+) activity than untransformed plants. These results indicate the fundamental role of K(+) homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.


Assuntos
Antiporters/metabolismo , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Tolerância ao Sal , Solanum lycopersicum/fisiologia , Antiporters/genética , Citosol/efeitos dos fármacos , Citosol/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Cinética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Potenciais da Membrana/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Prótons , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Tempo
5.
Methods Mol Biol ; 913: 371-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22895773

RESUMO

The expression of plant transporters in simple well-characterized cell systems is an irreplaceable technique for gaining insights into the kinetic and energetic features of plant transporters. Among all the available expression systems, yeast cells offer the highest simplicity and have the capacity to mimic the in vivo properties of plant transporters. Here, we describe the use of yeast mutants to express K(+) and Na(+) plant transporters and discuss some experimental problems that can produce misleading results.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Transporte de Íons/genética , Íons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transformação Genética , Vacúolos/metabolismo
6.
Biochim Biophys Acta ; 1818(9): 2362-71, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22551943

RESUMO

KEA genes encode putative K(+) efflux antiporters that are predominantly found in algae and plants but are rare in metazoa; however, nothing is known about their functions in eukaryotic cells. Plant KEA proteins show homology to bacterial K(+) efflux (Kef) transporters, though two members in the Arabidopsis thaliana family, AtKEA1 and AtKEA2, have acquired an extra hydrophilic domain of over 500 residues at the amino terminus. We show that AtKEA2 is highly expressed in leaves, stems and flowers, but not in roots, and that an N-terminal peptide of the protein is targeted to chloroplasts in Arabidopsis cotyledons. The full-length AtKEA2 protein was inactive when expressed in yeast; however, a truncated AtKEA2 protein (AtsKEA2) lacking the N-terminal domain complemented disruption of the Na(+)(K(+))/H(+) antiporter Nhx1p to confer hygromycin resistance and tolerance to Na(+) or K(+) stress. To test transport activity, purified truncated AtKEA2 was reconstituted in proteoliposomes containing the fluorescent probe pyranine. Monovalent cations reduced an imposed pH gradient (acid inside) indicating AtsKEA2 mediated cation/H(+) exchange with preference for K(+)=Cs(+)>Li(+)>Na(+). When a conserved Asp(721) in transmembrane helix 6 that aligns to the cation binding Asp(164) of Escherichia coli NhaA was replaced with Ala, AtsKEA2 was completely inactivated. Mutation of a Glu(835) between transmembrane helix 8 and 9 in AtsKEA2 also resulted in loss of activity suggesting this region has a regulatory role. Thus, AtKEA2 represents the founding member of a novel group of eukaryote K(+)/H(+) antiporters that modulate monovalent cation and pH homeostasis in plant chloroplasts or plastids.


Assuntos
Antiporters/química , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Cloroplastos/química , Proteínas de Escherichia coli/química , Canais de Potássio/química , Simportadores/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sulfonatos de Arila/química , Transporte Biológico , Domínio Catalítico , Cátions , Cromatografia de Afinidade/métodos , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Níquel/química , Peptídeos/química , Plastídeos/metabolismo , Canais de Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Simportadores/metabolismo
7.
Plant Physiol Biochem ; 51: 109-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22153246

RESUMO

In general, wild tomato species are more salt tolerant than cultivated species, a trait that is related to enhanced Na(+) accumulation in aerial parts in the wild species, but the molecular basis for these differences is not known. Plant NHX proteins have been suggested to be important for salt tolerance by promoting accumulation of Na(+) or K(+) inside vacuoles. Therefore, differences in expression or activity of NHX proteins in tomato could be at the basis of the enhanced salt tolerance in wild tomato species. To test this hypothesis, we studied the expression level of four NHX genes in the salt sensitive cultivated species Solanum lycopersicum L. cv. Volgogradskij and the salt tolerant wild species Solanum pimpinelifolium L in response to salt stress. First, we determined that in the absence of salt stress, the RNA abundance of LeNHX2, 3 and 4 was comparable in both species, while more LeNHX1 RNA was detected in the tolerant species. LeNHX2 and LeNHX3 showed comparable expression levels and were present in all tissues, while LeNHX4 was expressed above all in stem and fruit tissues. Next, we confirmed that the wild species was more tolerant and accumulated more Na(+) in aerial parts of the plant. This correlated with the observation that salt stress induced especially the LeNHX3 and LeNHX4 isoforms in the tolerant species. These results support a role of NHX genes as determinants of salt tolerance in tomato, inducing enhanced Na(+) accumulation observed in the wild species when grown in the presence of NaCl.


Assuntos
RNA de Plantas/metabolismo , Plantas Tolerantes a Sal/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Filogenia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/metabolismo , Componentes Aéreos da Planta/fisiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA de Plantas/genética , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Estresse Fisiológico , Fatores de Tempo
8.
Plant Cell ; 23(1): 224-39, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21278129

RESUMO

Intracellular Na(+)/H(+) antiporters (NHXs) play important roles in cellular pH and Na(+) and K(+) homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either their function or localization. Using reverse genetics, we show that whereas single knockouts nhx5 or nhx6 did not differ from the wild type, the double knockout nhx5 nhx6 showed reduced growth, with smaller and fewer cells and increased sensitivity to salinity. Reduced growth of nhx5 nhx6 was due to slowed cell expansion. Transcriptome analysis indicated that nhx5, nhx6, and the wild type had similar gene expression profiles, whereas transcripts related to vesicular trafficking and abiotic stress were enriched in nhx5 nhx6. We show that unlike other intracellular NHX proteins, NHX5 and NHX6 are associated with punctate, motile cytosolic vesicles, sensitive to Brefeldin A, that colocalize to known Golgi and trans-Golgi network markers. We provide data to show that vacuolar trafficking is affected in nhx5 nhx6. Possible involvements of NHX5 and NHX6 in maintaining organelle pH and ion homeostasis with implications in endosomal sorting and cellular stress responses are discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Endossomos/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , RNA de Plantas/genética , Salinidade , Trocadores de Sódio-Hidrogênio/genética , Estresse Fisiológico , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo
9.
J Biol Chem ; 285(44): 33914-22, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20709757

RESUMO

We previously demonstrated that Saccharomyces cerevisiae vnx1Δ mutant strains displayed an almost total loss of Na(+) and K(+)/H(+) antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K(+)/H(+) antiporter activity. By disrupting genes encoding transporters potentially involved in the vnx1 mutant strain, we determined that Vcx1p is responsible for this activity. This result was further confirmed by complementation of the vnx1Δvcx1Δ nhx1Δ triple mutant with Vcx1p and its inactivated mutant Vcx1p-H303A. Like the Ca(2+)/H(+) antiporter activity catalyzed by Vcx1p, the K(+)/H(+) antiporter activity was strongly inhibited by Cd(2+) and to a lesser extend by Zn(2+). Unlike as previously observed for NHX1 or VNX1, VCX1 overexpression only marginally improved the growth of yeast strain AXT3 in the presence of high concentrations of K(+) and had no effect on hygromycin sensitivity. Subcellular localization showed that Vcx1p and Vnx1p are targeted to the vacuolar membrane, whereas Nhx1p is targeted to prevacuoles. The relative importance of Nhx1p, Vnx1p, and Vcx1p in the vacuolar accumulation of monovalent cations will be discussed.


Assuntos
Cátions/química , Mutação , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Antiporters/química , Cádmio/química , Cinamatos/química , Higromicina B/análogos & derivados , Higromicina B/química , Microscopia de Fluorescência/métodos , Plasmídeos/metabolismo , Mutação Puntual , Potássio/química , Proteínas de Saccharomyces cerevisiae/química , Trocadores de Sódio-Hidrogênio/química , Frações Subcelulares/química , Zinco/química
10.
Plant Signal Behav ; 4(4): 265-76, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19794841

RESUMO

Although physiological and biochemical data since long suggested that Na(+)/H(+) and K(+)/H(+) antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative Cation/Proton antiporters, the function of which is only beginning to be studied. The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants. The founding member, AtNHX1, was identified as an important salt tolerance determinant and suggested to catalyze Na(+) accumulation in vacuoles. It is, however, becoming increasingly clear, that this gene and other members of the family also play crucial roles in pH regulation and K(+) homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.


Assuntos
Proteínas de Plantas/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Plantas Tolerantes a Sal/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Concentração de Íons de Hidrogênio , Filogenia , Proteínas de Plantas/genética , Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Vacúolos/metabolismo
11.
J Biol Chem ; 282(33): 24284-93, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17588950

RESUMO

We identified and characterized Vnx1p, a novel vacuolar monovalent cation/H+ antiporter encoded by the open reading frame YNL321w from Saccharomyces cerevisiae. Despite the homology of Vnx1p with other members of the CAX (calcium exchanger) family of transporters, Vnx1p is unable to mediate Ca2+ transport but is a low affinity Na+/H+ and K+/H+ anti-porter with a Km of 22.4 and 82.2 mm for Na+ and K+, respectively. Sequence analyses of Vnx1p revealed the absence of key amino acids shown to be essential for Ca2+/H+ exchange. vnx1Delta cells displayed growth inhibition when grown in the presence of hygromycin B or NaCl. Vnx1p activity was found in the vacuoles and shown to be dependent on the electrochemical potential gradient of H+ generated by the action of the V-type H+-ATPase. The presence of Vnx1p at the vacuolar membrane was further confirmed with cells expressing a VNX1::GFP chimeric gene. Similar to Nhx1p, the prevacuolar compartment-bound Na+/H+ antiporter, the vacuole-bound Vnx1p appears to play roles in the regulation of ion homeostasis and cellular pH.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/fisiologia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/fisiologia , Sequência de Aminoácidos , Antiporters , Cátions Monovalentes , Eletrofisiologia , Homeostase , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas de Saccharomyces cerevisiae/química , Trocadores de Sódio-Hidrogênio/química , ATPases Vacuolares Próton-Translocadoras/química
12.
Plant Cell Physiol ; 48(6): 804-11, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17463051

RESUMO

We have cloned and characterized VvNHX1, a gene encoding a vacuolar cation/H(+) antiporter from Vitis vinifera cv. Cabernet Sauvignon. VvNHX1 belongs to the vacuolar NHX protein family and showed high similarity to other known vacuolar antiporters. The expression of VvNHX1 partially complements the salt- and hygromycin-sensitive phenotypes of an ena1-4 nhx1 yeast strain. Immunoblots of vacuoles of yeast expressing a VvNHX1, together with the expression of a VvNHX1-GFP (green fluorescent protein) chimera demonstrated that VvNHX1 localized to the vacuoles. VvNHX1 displayed low affinity K(+)/H(+) and Na(+)/H(+) exchange activities (12.8 and 40.2 mM, respectively). The high levels of expression of VvNHX1 during the véraison and post-véraison stages would indicate that the increase in vacuolar K(+) accumulation, mediated by VvNHX1, is needed for vacuolar expansion. This process, together with the rapid accumulation of reducing sugars, would drive water uptake to the berry and the concomitant berry size increase, typical of the post-véraison stage of growth.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Frutas/metabolismo , Vitis/metabolismo , Proteínas de Transporte de Cátions/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Saccharomyces cerevisiae/metabolismo , Vitis/genética
13.
Proc Natl Acad Sci U S A ; 103(47): 18008-13, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17101982

RESUMO

Intracellular vesicle trafficking performs essential functions in eukaryotic cells, such as membrane trafficking and delivery of molecules to their destinations. A major endocytotic route in plants is vesicle trafficking to the vacuole that plays an important role in plant salt tolerance. The final step in this pathway is mediated by the AtVAMP7C family of vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptors (v-SNAREs) that carry out the vesicle fusion with the tonoplast. Exposure to high-salt conditions causes immediate ionic and osmotic stresses, followed by production of reactive oxygen species. Here, we show that the reactive oxygen species are produced intracellularly, in endosomes that were targeted to the central vacuole. Suppression of the AtVAMP7C genes expression by antisense AtVAMP711 gene or in mutants of this family inhibited fusion of H2O2-containing vesicles with the tonoplast, which resulted in formation of H2O2-containing megavesicles that remained in the cytoplasm. The antisense and mutant plants exhibited improved vacuolar functions, such as maintenance of DeltapH, reduced release of calcium from the vacuole, and greatly improved plant salt tolerance. The antisense plants exhibited increased calcium-dependent protein kinase activity upon salt stress. Improved vacuolar ATPase activity during oxidative stress also was observed in a yeast system, in a DeltaVamp7 knockout strain. Interestingly, a microarray-based analysis of the AtVAMP7C genes showed a strong down-regulation of most genes in wild-type roots during salt stress, suggesting an evolutionary molecular adaptation of the vacuolar trafficking.


Assuntos
Arabidopsis , Vesículas Citoplasmáticas/metabolismo , Endocitose/fisiologia , Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Proteínas SNARE/metabolismo , Sais/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Fusão de Membrana/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas SNARE/genética , Vacúolos/metabolismo
14.
Plant Physiol ; 135(3): 1378-87, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15247401

RESUMO

The oligopeptide transporter (OPT) family contains nine members in Arabidopsis. While there is some evidence that AtOPTs mediate the uptake of tetra- and pentapeptides, OPT homologs in rice (Oryza sativa; OsGT1) and Indian mustard (Brassica juncea; BjGT1) have been described as transporters of glutathione derivatives. This study investigates the possibility that two members of the AtOPT family, AtOPT6 and AtOPT7, may also transport glutathione and its conjugates. Complementation of the hgt1met1 yeast double mutant by plant homologs of the yeast glutathione transporter HGT1 (AtOPT6, AtOPT7, OsGT1, BjGT1) did not restore the growth phenotype, unlike complementation by HGT1. By contrast, complementation by AtOPT6 restored growth of the hgt1 yeast mutant on a medium containing reduced (GSH) or oxidized glutathione as the sole sulfur source and induced uptake of [3H]GSH, whereas complementation by AtOPT7 did not. In these conditions, AtOPT6-dependent GSH uptake in yeast was mediated by a high affinity (Km = 400 microm) and a low affinity (Km = 5 mm) phase. It was strongly competed for by an excess oxidized glutathione and glutathione-N-ethylmaleimide conjugate. Growth assays of yeasts in the presence of cadmium (Cd) suggested that AtOPT6 may transport Cd and Cd/GSH conjugate. Reporter gene experiments showed that AtOPT6 is mainly expressed in dividing areas of the plant (cambium, areas of lateral root initiation). RNA blots on cell suspensions and real-time reverse transcription-PCR on Arabidopsis plants indicated that AtOPT6 expression is strongly induced by primisulfuron and, to a lesser extent, by abscisic acid but not by Cd. Altogether, the data show that the substrate specificity and the physiological functions of AtOPT members may be diverse. In addition to peptide transport, AtOPT6 is able to transport glutathione derivatives and metal complexes, and may be involved in stress resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Sulfonamidas/farmacologia , Simportadores/metabolismo , Ureia/análogos & derivados , Ureia/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA , Flores/citologia , Flores/enzimologia , Regulação da Expressão Gênica de Plantas/genética , Glucuronidase/genética , Cinética , Oryza/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Reação em Cadeia da Polimerase , Transporte Proteico/efeitos dos fármacos , Simportadores/efeitos dos fármacos , Simportadores/genética
15.
Plant Physiol ; 134(1): 482-91, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14730075

RESUMO

Uptake and compartmentation of reduced glutathione (GSH), oxidized glutathione (GSSG), and glutathione conjugates are important for many functions including sulfur transport, resistance against biotic and abiotic stresses, and developmental processes. Complementation of a yeast (Saccharomyces cerevisiae) mutant (hgt1) deficient in glutathione transport was used to characterize a glutathione transporter cDNA (OsGT1) from rice (Oryza sativa). The 2.58-kb full-length cDNA (AF393848, gi 27497095), which was obtained by screening of a cDNA library and 5'-rapid amplification of cDNA ends-polymerase chain reaction, contains an open reading frame encoding a 766-amino acid protein. Complementation of the hgt1 yeast mutant strain with the OsGT1 cDNA restored growth on a medium containing GSH as the sole sulfur source. The strain expressing OsGT1 mediated [3H]GSH uptake, and this uptake was significantly competed not only by unlabeled GSSG and GS conjugates but also by some amino acids and peptides, suggesting a wide substrate specificity. OsGT1 may be involved in the retrieval of GSSG, GS conjugates, and nitrogen-containing peptides from the cell wall.


Assuntos
Proteínas de Transporte/metabolismo , Glutationa/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Metabolismo Energético , Teste de Complementação Genética , Genoma Bacteriano , Proteínas de Membrana Transportadoras , Mutação , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA