Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407355, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837587

RESUMO

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46% and 18.24%, respectively, marking the highest value for NFREA-based OSCs.

2.
Heliyon ; 10(10): e30969, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813202

RESUMO

Snake venoms, comprising a complex array of protein-rich components, an important part of which are snake venom metalloproteinases (SVMPs). These SVMPs, which are predominantly isolated from viperid venoms, are integral to the pathology of snakebites. However, SVMPs derived from elapid venoms have not been extensively explored, and only a handful of SVMPs have been characterized to date. Atrase A, a nonhemorrhagic P-III class metalloproteinase from Naja atra venom, exhibits weak proteolytic activity against fibrinogen in vitro but has pronounced anticoagulant effects in vivo. This contrast spurred investigations into its anticoagulant mechanisms. Research findings indicate that atrase A notably extends the activated partial thromboplastin time, diminishes fibrinogen levels, and impedes platelet aggregation. The anticoagulant action of atrase A primarily involves inhibiting coagulation factor VIII and activating the endogenous fibrinolytic system, which in turn lowers fibrinogen levels. Additionally, its effect on platelet aggregation further contributes to its anticoagulant profile. This study unveils a novel anticoagulant mechanism of atrase A, significantly enriching the understanding of the roles of cobra venom metalloproteinases in snake venom. Furthermore, these findings underscore the potential of atrase A as a novel anticoagulant drug, offering insights into the functional evolutions of cobra venom metalloproteinases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38808720

RESUMO

OBJECTIVE: The study aimed to investigate the efficacy and safety of semaglutide in weight loss in non-diabetic people. METHODS: In this study, 84 non-diabetic people who used semaglutide to lose weight in the outpatient department of our hospital from January 1, 2022, to June 30, 2022, were enrolled and compared for changes in body weight, waist circumference, Body Mass Index (BMI), fasting blood glucose, blood pressure, pulse, and body composition (body fat ratio, visceral fat area, and skeletal muscle) before treatment and 12 weeks after the treatment to analyze the weight loss efficacy and safety. RESULTS: After administering semaglutide 0.25 mg, 0.5 mg, 0.75 mg, or 1 mg subcutaneously once a week for 12 weeks, 84 participants in this study obtained an average weight loss of 5.91 ± 3.37 kg, equivalent to 6.15 ± 4.28% of baseline body weight, and there was also a significant reduction in visceral fat area and a slight reduction in blood pressure. The most common adverse reactions included gastrointestinal reactions (nausea, vomiting, and diarrhea), which were mild and subsided within 1-2 days. No severe adverse reaction, such as hypoglycemia and hypotension, was observed. CONCLUSION: Low-dose semaglutide has been found to be effective and safe for short-term weight loss in non-diabetic people.

4.
Nanomaterials (Basel) ; 14(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38535633

RESUMO

CeO2 is an outstanding support commonly used for the CuO-based CO oxidation catalysts due to its excellent redox property and oxygen storage-release property. However, the inherently small specific surface area of CeO2 support restricts the further enhancement of its catalytic performance. In this work, the novel mesoporous CeO2 nanosphere with a large specific surface area (~190.4 m2/g) was facilely synthesized by the improved hydrothermal method. The large specific surface area of mesoporous CeO2 nanosphere could be successfully maintained even at high temperatures up to 500 °C, exhibiting excellent thermal stability. Then, a series of CuO-based CO oxidation catalysts were prepared with the mesoporous CeO2 nanosphere as the support. The large surface area of the mesoporous CeO2 nanosphere support could greatly promote the dispersion of CuO active sites. The effects of the CuO loading amount, the calcination temperature, mesostructure, and redox property on the performances of CO oxidation were systematically investigated. It was found that high Cu+ concentration and lattice oxygen content in mesoporous CuO/CeO2 nanosphere catalysts greatly contributed to enhancing the performances of CO oxidation. Therefore, the present mesoporous CeO2 nanosphere with its large specific surface area was considered a promising support for advanced CO oxidation and even other industrial catalysts.

5.
Cell Rep ; 43(3): 113716, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412094

RESUMO

Ovarian endometriosis is characterized by the growth of endometrial tissue within the ovary, causing infertility and chronic pain. However, its pathophysiology remains unclear. Utilizing high-precision single-cell RNA sequencing, we profile the normal, eutopic, and ectopic endometrium from 34 individuals across proliferative and secretory phases. We observe an increased proportion of ciliated cells in both eutopic and ectopic endometrium, characterized by a diminished expression of estrogen sulfotransferase, which likely confers apoptosis resistance. After translocating to ectopic lesions, endometrial epithelium upregulates nicotinamide N-methyltransferase expression that inhibits apoptosis by promoting deacetylation and subsequent nuclear exclusion of transcription factor forkhead box protein O1, thereby leading to the downregulation of the apoptotic gene BIM. Moreover, epithelial cells in ectopic lesions elevate HLA class II complex expression, which stimulates CD4+ T cells and consequently contributes to chronic inflammation. Altogether, our study provides a comprehensive atlas of ovarian endometriosis and highlights potential therapeutic targets for modulating apoptosis and inflammation.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/patologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Endométrio/metabolismo , Análise de Célula Única , Inflamação/patologia
6.
Angew Chem Int Ed Engl ; 63(10): e202318143, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38190621

RESUMO

In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.

9.
Angew Chem Int Ed Engl ; 63(6): e202315625, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100221

RESUMO

Utilizing intermolecular hydrogen-bonding interactions stands for an effective approach in advancing the efficiency and stability of small-molecule acceptors (SMAs) for polymer solar cells. Herein, we synthesized three SMAs (Qo1, Qo2, and Qo3) using indeno[1,2-b]quinoxalin-11-one (Qox) as the electron-deficient group, with the incorporation of a methylation strategy. Through crystallographic analysis, it is observed that two Qox-based methylated acceptors (Qo2 and Qo3) exhibit multiple hydrogen bond-assisted 3D network transport structures, in contrast to the 2D transport structure observed in gem-dichlorinated counterpart (Qo4). Notably, Qo2 exhibits multiple and stronger hydrogen-bonding interactions compared with Qo3. Consequently, PM6 : Qo2 device realizes the highest power conversion efficiency (PCE) of 18.4 %, surpassing the efficiencies of devices based on Qo1 (15.8 %), Qo3 (16.7 %), and Qo4 (2.4 %). This remarkable PCE in PM6 : Qo2 device can be primarily ascribed to the enhanced donor-acceptor miscibility, more favorable medium structure, and more efficient charge transfer and collection behavior. Moreover, the PM6 : Qo2 device demonstrates exceptional thermal stability, retaining 82.8 % of its initial PCE after undergoing annealing at 65 °C for 250 hours. Our research showcases that precise methylation, particularly targeting the formation of intermolecular hydrogen-bonding interactions to tune crystal packing patterns, represents a promising strategy in the molecular design of efficient and stable SMAs.

10.
ACS Appl Mater Interfaces ; 15(39): 46138-46147, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37737104

RESUMO

Molecular dopants can effectively improve the performance of organic solar cells (OSCs). Here, PM6/BTP-eC9-4Cl-based OSCs are fabricated by a layer-by-layer (LbL) deposition method, and the electron acceptor BTP-eC9-4Cl layer is properly doped by n-type dopant benzyl viologen (BV) or [4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl]dimethyl-amine (N-DMBI-H). The power conversion efficiency (PCE) of OSCs increases from 16.80 to 17.61 or 17.84% when the acceptor layer is doped by BV (0.01 wt %) or N-DMBI-H (0.01 wt %), respectively. At the optimal doping concentration, the device exhibits more balanced charge transport, fewer bimolecular recombinations, faster charge separation and transfer, and better stability. This doping strategy has good universality; when the acceptor layer L8-BO of LbL OSCs is doped by 0.01 wt % BV or 0.01 wt % N-DMBI-H, the PCE increases from 17.49 to 18.35 or 18.25%, respectively. All in all, our studies have demonstrated that the doping strategy is effective in enhancing the performance of OSCs.

11.
Nurs Open ; 10(10): 6885-6895, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37469117

RESUMO

AIM: The purpose of this study was to provide a comprehensive understanding of the attitudes and experiences of the medical staff regarding the hospital bed-sharing model. DESIGN: The present research was a qualitative study. METHODS: This qualitative study used in-depth individual interviews with 7 doctors, 10 clinical nurses and 3 head nurses, which were then transcribed and analysed thematically. RESULTS: The study identified six overall themes. Issues were raised about the efficient utilization of hospital bed resources, greater challenges for nursing work, adjustment of doctors' work modes, barriers to communication between doctors, nurses, and patients, potential medical risks, and differentiation of patients' medical experience. IMPLICATIONS FOR NURSING MANAGEMENT: Hospital administrators and nurse managers should work together to solve the challenges that medical staff face, including strengthening nursing training, improving medical-nursing collaboration models, standardizing and effective communication strategies, and improving patient experiences.


Assuntos
Corpo Clínico Hospitalar , Corpo Clínico , Humanos , Pesquisa Qualitativa , Comunicação , Hospitais
12.
Inorg Chem ; 62(25): 9983-10002, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306510

RESUMO

Toluene is the most common volatile organic compound (VOC), and the MnO2-based catalyst is one of the excellent nonprecious metal catalysts for toluene oxidation. In this study, the effects of MnO2 precursors and the support types on the oxidation performance of toluene were systematically explored. The results showed that the 15MnO2/MS-CeO2-N catalyst with Mn(NO3)2·4H2O as the precursor and the mesoporous CeO2 nanosphere (MS-CeO2) as the support exhibited the most excellent performance. To reveal the reason behind this phenomenon, the calcination process of the catalyst precursor and the reaction process of toluene oxidation were investigated by in situ DRIFTS. It was found that the MnO2 precursor and the type of catalyst support could have a large effect on the reaction pathway and the produced intermediates. Therefore, the roles of the MnO2 precursor and the type of support should be key considerations when developing the high-performance MnO2-based toluene oxidation catalyst.

13.
Chin Med J (Engl) ; 136(24): 2974-2982, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37284741

RESUMO

BACKGROUND: High-grade serous ovarian cancer (HGSOC) is the biggest cause of gynecological cancer-related mortality because of its extremely metastatic nature. This study aimed to explore and evaluate the characteristics of candidate factors associated with the metastasis and progression of HGSOC. METHODS: Transcriptomic data of HGSOC patients' samples collected from primary tumors and matched omental metastatic tumors were obtained from three independent studies in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected to evaluate the effects on the prognosis and progression of ovarian cancer using data from The Cancer Genome Atlas (TCGA) database. Hub genes' immune landscapes were estimated by the Tumor Immune Estimation Resource (TIMER) database. Finally, using 25 HGSOC patients' cancer tissues and 10 normal fallopian tube tissues, immunohistochemistry (IHC) was performed to quantify the expression levels of hub genes associated with International Federation of Gynecology and Obstetrics (FIGO) stages. RESULTS: Fourteen DEGs, ADIPOQ , ALPK2 , BARX1 , CD37 , CNR2 , COL5A3 , FABP4 , FAP , GPR68 , ITGBL1 , MOXD1 , PODNL1 , SFRP2 , and TRAF3IP3 , were upregulated in metastatic tumors in every database while CADPS , GATA4 , STAR , and TSPAN8 were downregulated. ALPK2 , FAP , SFRP2 , GATA4 , STAR , and TSPAN8 were selected as hub genes significantly associated with survival and recurrence. All hub genes were correlated with tumor microenvironment infiltration, especially cancer-associated fibroblasts and natural killer (NK) cells. Furthermore, the expression of FAP and SFRP2 was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, and their increased protein expression levels in metastatic samples compared with primary tumor samples and normal tissues were confirmed by IHC ( P = 0.0002 and P = 0.0001, respectively). CONCLUSIONS: This study describes screening for DEGs in HGSOC primary tumors and matched metastasis tumors using integrated bioinformatics analyses. We identified six hub genes that were correlated with the progression of HGSOC, particularly FAP and SFRP2 , which might provide effective targets to predict prognosis and provide novel insights into individual therapeutic strategies for HGSOC.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Prognóstico , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Tumoral , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/uso terapêutico , Tetraspaninas/genética , Proteínas Quinases , Integrina beta1/genética , Integrina beta1/uso terapêutico
14.
Adv Mater ; 35(28): e2211372, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37130579

RESUMO

The layer-by-layer (LbL) solution-processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor-acceptor (D/A) interfaces, and favorable charge-transport pathways. In this work, a wide-bandgap component poly(9-vinylcarbazole) (PVK) is added to the upper electron acceptor layer to improve the performance of LbL-processed OSCs. Results show that the PVK component can adjust the film morphology, dope the electron acceptor, increase the electron concentration, and improve charge transport. Such n-type doping is verified by Seebeck coefficient measurement, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance characterization. In addition, the fluorescence intensity and exciton lifetime of the PVK-doped acceptor film are increased, thus being beneficial for exciton diffusion to the D/A interface. Therefore, the power conversion efficiency (PCE) of LbL OSCs increases when 2.50 wt.% PVK is employed in the electron acceptor layer of commonly-used high-efficiency system and a maximum value of 19.05% can be achieved. The role of PVK played in the active layer is different from those of additives and ternary components reported previously, so the results provide an alternative way to enhance the device performance of LbL-processed OSCs.


Assuntos
Elétrons , Difusão , Condutividade Elétrica
15.
Angew Chem Int Ed Engl ; 62(30): e202304127, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37232174

RESUMO

The central core in A-DA1 D-A-type small-molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3-b]quinoxaline (PyQx) as new electron-deficient unit by combining with the cascade-chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high-performance SMAs, providing insight into the design of efficient A-DA1 D-A-type SMAs for OSCs.

16.
Int J Biol Macromol ; 240: 124301, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004936

RESUMO

To fully research the anti-diabetic activity of apricot polysaccharide, low temperature plasma (LTP) was used to modify apricot polysaccharide. The modified polysaccharide was isolated and purified using column chromatography. It was found that LTP modification can significantly improve the α-glucosidase glucosidase inhibition rate of apricot polysaccharides. The isolated fraction FAPP-2D with HG domain showed excellent anti-diabetic activity in insulin resistance model in L6 cell. We found that FAPP-2D increased the ADP/ATP ratio and inhibited PKA phosphorylation, activating the LKB1-AMPK pathway. Moreover, FAPP-2D activated AMPK-PGC1α pathway, which could stimulated mitochondrial production and regulate energy metabolism, promoting GLUT4 protein transport to achieve an anti-diabetic effect. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy data showed that the LTP modification could increase the CH bond content while decreasing the C-O-C/C-O bond content, indicating that LTP destroyed the C-O-C/C-O bond, which enhanced the anti-diabetes activity of the modified apricot pectin polysaccharide. Our findings could pave the way for the molecular exploitation of apricot polysaccharides and the application of low-temperature plasma.


Assuntos
Diabetes Mellitus , Prunus armeniaca , Pectinas/química , Prunus armeniaca/química , Temperatura , Proteínas Quinases Ativadas por AMP/metabolismo , Polissacarídeos/química
17.
ACS Appl Mater Interfaces ; 15(3): 4275-4283, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36645327

RESUMO

Solving the contradiction between good solubility and dense packing is a challenge in designing high-performance nonfullerene acceptors. Herein, two simple nonfused ring electron acceptors (o-AT-2Cl and m-AT-2Cl) carrying ortho- or meta-substituted hexyloxy side chains can be facilely synthesized in only three steps. The two ortho-substituted phenyl side chains in o-AT-2Cl cannot freely rotate due to a big steric hindrance, which endows the acceptor with good solubility. Moreover, o-AT-2Cl displays a more ordered packing than m-AT-2Cl as revealed by the absorption measurement. When blended with polymer donor D18 for the fabrication of organic solar cells (OSCs), o-AT-2Cl-based devices exhibit a favorable morphology, more efficient exciton dissociation, and better charge transport. Consequently, the optimal OSCs based on D18:o-AT-2Cl exhibit a power conversion efficiency (PCE) of 12.8%, which is significantly higher than the moderate PCE (7.66%) for D18:m-AT-2Cl-based devices. Remarkably, o-AT-2Cl shows a higher figure-of-merit value compared with classic high-efficiency fused ring electron acceptors. As a result, our research succeeds in obtaining nonfused ring acceptors with cost-effective photovoltaic performance and provides a valuable experience for simultaneously improving solubility as well as ensuring ordered packing of acceptors through regulating the steric hindrance via changing the position of substituents.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36110183

RESUMO

Objectives: To investigate the association of folic acid (FA) supplementation with hypertensive disorder complicating pregnancy (HDCP) and preeclampsia in Jiangsu Province, China. Materials and Methods: In this cross-sectional study, a total of 10,662 women with infants born between January 2017 and December 2018 were enrolled in Jiangsu Province, China. Maternal women with and without FA supplement intake were compared in this study. FA supplementation included 0.4 mg FA (0.4 FA), multivitamins with 0.4 mg FA (multivitamin (MV)+0.4 FA), and multivitamins with 0.8 mg FA (MV + 0.8 FA). Associations between FA intake, FA supplement dose or duration, (MV + FA) dosage per weight, and HDCP were analysed using ANOVA, the chi-square test, and logistic regression analysis. Results: Over the study follow-up period, the incidences of HDCP and preeclampsia were 3.5%, 1.4%, and 2.2%, 0.6% in the non-FA supplementation and FA supplementation groups, but only 1.5% and 0.1% in the MV + 0.8 FA group in early pregnancy. Compared with the non-FA group, HDCP and preeclampsia had the lowest risk in the MV + 0.8 FA group among the seven FA supplementation groups (HDCP: RR = 0.42, 95% CI = 0.27-0.68, P=0.001; preeclampsia: RR = 0.09, 95% CI = 0.03-0.33, P=0.001) in early pregnancy. Compared with the 0.4 FA alone group, the risk of HDCP and preeclampsia in women taking MV + 0.8 FA was significantly reduced (RR = 0.60, 95% CI = 0.41-0.87, P=0.008; preeclampsia: RR = 0.18, 95% CI = 0.06-0.60, P=0.005) in early pregnancy. (MV + FA)/BMI supplementation was associated with the risk of HDCP in early pregnancy (P trend = 0.002). Conclusions: MV supplement with 0.8 mg FA during early pregnancy may be effective in reducing HDCP and preeclampsia risk. The study provided the viewpoint that (MV + FA)/BMI could be used as a reference for FA intake in pregnant women of different weights.

19.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080056

RESUMO

In this work, a series of Cu2O/S (S = α-MnO2, CeO2, ZSM-5, and Fe2O3) supported catalysts with a Cu2O loading amount of 15% were prepared by the facile liquid-phase reduction deposition-precipitation strategy and investigated as CO oxidation catalysts. It was found that the Cu2O/α-MnO2 catalyst exhibits the best catalytic activity for CO oxidation. Additionally, a series of Cu2O-CuO/α-MnO2 heterojunctions with varied proportion of Cu+/Cu2+ were synthesized by further calcining the pristine Cu2O/α-MnO2 catalyst. The ratio of the Cu+/Cu2+ could be facilely regulated by controlling the calcination temperature. It is worth noting that the Cu2O-CuO/α-MnO2-260 catalyst displays the best catalytic performance. Moreover, the kinetic studies manifest that the apparent activation energy could be greatly reduced owing to the excellent redox property and the Cu2O-CuO interface effect. Therefore, the Cu2O-CuO heterojunction catalysts supported on α-MnO2 nanotubes are believed to be the potential catalyst candidates for CO oxidation with advanced performance.

20.
Small ; 18(35): e2203454, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934890

RESUMO

Motivated by simplifying the synthesis of nonfullerene acceptor and establishing the relation between molecular structure and photovoltaic performance, two isomeric nonfused ring electron acceptors (o-TT-Cl and m-TT-Cl), whose properties can be adjusted by changing the side chains, are designed and synthesized with several high-yield steps. o-TT-Cl with V-shaped side chain induces a dominated J-aggregation and displays much better solubility and more ordered packing than m-TT-Cl with linear side chain. Thus, the o-TT-Cl-based blend film generates better phase morphology and charge transport than m-TT-Cl-based one. Finally, the power conversion efficiency of o-TT-Cl-based devices is 12.84%, which is much higher than that of m-TT-Cl-based ones (6.54%). This work highlights the importance of side chains engineering on improving photovoltaic performance of nonfused ring electron acceptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA