Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5284-5291, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626333

RESUMO

The performance of blue quantum dot light-emitting diodes (QLEDs) is limited by unbalanced charge injection, resulting from insufficient holes caused by low mobility or significant energy barriers. Here, we introduce an angular-shaped heteroarene based on cyclopentane[b]thiopyran (C8-SS) to modify the hole transport layer poly-N-vinylcarbazole (PVK), in blue QLEDs. C8-SS exhibits high hole mobility and conductivity due to the π···π and S···π interactions. Introducing C8-SS to PVK significantly enhanced hole mobility, increasing it by 2 orders of magnitude from 2.44 × 10-6 to 1.73 × 10-4 cm2 V-1 s-1. Benefiting from high mobility and conductivity, PVK:C8-SS-based QLEDs exhibit a low turn-on voltage (Von) of 3.2 V. More importantly, the optimized QLEDs achieve a high peak power efficiency (PE) of 7.13 lm/W, which is 2.65 times that of the control QLEDs. The as-proposed interface engineering provides a novel and effective strategy for achieving high-performance blue QLEDs in low-energy consumption lighting applications.

2.
Nano Lett ; 24(5): 1594-1601, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38134416

RESUMO

Blue quantum dot (QD) light-emitting diodes (QLEDs) exhibit unsatisfactory operational stability and electroluminescence (EL) properties due to severe nonradiative recombination induced by large numbers of dangling bond defects and charge imbalance in QD. Herein, dipolar aromatic amine-functionalized molecules with different molecular polarities are employed to regulate charge transport and passivate interfacial defects between QD and the electron transfer layer (ETL). The results show that the stronger the molecular polarity, especially with the -CF3 groups possessing a strong electron-withdrawing capacity, the more effective the defect passivation of S and Zn dangling bonds at the QD surface. Moreover, the dipole interlayer can effectively reduce electron injection into QD at high current density, enhancing charge balance and mitigating Joule heat. Finally, blue QLEDs exhibit a peak external quantum efficiency (EQE) of 21.02% with an operational lifetime (T50 at 100 cd m-2) exceeding 4000 h.

3.
Nanoscale ; 15(25): 10677-10684, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37314171

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have been actively pursued as the most effective electron transport layer for quantum-dot light-emitting diodes (QLEDs) in light of their unique optical and electronic properties and low-temperature processing. However, the high electron mobility and smooth energy level alignment at QDs/ZnO/cathode interfaces cause electron over-injection, which aggravates non-radiative Auger recombination. Meanwhile, the abundant defects hydroxyl group (-OH) and oxygen vacancies (OV) in ZnO NPs act as trap states inducing exciton quenching, which synergistically reduces the effective radiation recombination for degrading the device performance. Here, we develop a bifunctional surface engineering strategy to synthesize ZnO NPs with low defect density and high environmental stability by using ethylenediaminetetraacetic acid dipotassium salt (EDTAK) as an additive. The additive effectively passivates surface defects in ZnO NPs and induces chemical doping simultaneously. Bifunctional engineering alleviates electron excess injection by elevating the conduction band level of ZnO to promote charge balance. As a result, state-of-the-art blue QLEDs with an EQE of 16.31% and a T50@100 cd m-2 of 1685 h are achieved, providing a novel and effective strategy to fabricate blue QLEDs with high efficiency and a long operating lifetime.


Assuntos
Nanopartículas , Pontos Quânticos , Óxido de Zinco , Transporte de Elétrons , Elétrons
4.
Nanoscale ; 9(4): 1567-1574, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28067929

RESUMO

To date, all the lead halide based full-inorganic or organic-inorganic hybrid perovskites have been synthesized from organic solvent, such as N,N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO), by a solution method. Herein, water has been utilized as a 'green' solvent to develop an efficient synthetic route to grow various kinds of lead halide perovskite nanowires (NWs). By controlling the proportion of the hybrid cations, Csx(CH3NH3)1-xPbI3 perovskite NWs were successfully synthesized. Every Csx(CH3NH3)1-xPbI3 perovskite NW demonstrated single crystal characteristics with uniform stoichiometric element distribution. Because of the controllable cation composition, the NW bandgaps could be finely tuned from 1.5 to 1.7 eV. Transient photoluminescence spectra showed superior NW quality when compared with those of the conventional DMF-based NWs. Based on the abovementioned high quality single Cs0.5(CH3NH3)0.5PbI3 perovskite NW, a reliable single-NW photodetector was fabricated to investigate the optoelectronic application. It demonstrated a responsivity of 23 A/W, exceeding most of the reported values in the perovskite nanowire photoconductive detectors, and the shot-noise normalized detectivity was 2.5 × 1011 Jones comparable to the parameters of the commercial silicon-based nanowires. The green and robust synthesis method, finely tunable NW bandgaps, and superior optoelectronic properties are expected to open a new door for the development of perovskite optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 7(32): 17776-81, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26196412

RESUMO

Semitransparent solar cells are highly attractive for application as power-generating windows. In this work, we present semitransparent perovskite solar cells that employ conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) film as the transparent counter electrode. The PEDOT: PSS electrode is prepared by transfer lamination technique using plastic wrap as the transfer medium. The use of the transfer lamination technique avoids the damage of the CH3NH3PbI3 perovskite film by direct contact of PEDOT: PSS aqueous solution. The semitransparent perovskite solar cells yield a power conversion efficiency of 10.1% at an area of about 0.06 cm(2) and 2.9% at an area of 1 cm(2). The device structure and the fabrication technique provide a facile way to produce semitransparent perovskite solar cells.

6.
Nanotechnology ; 23(48): 485603, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23128027

RESUMO

A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated.


Assuntos
Ouro/química , Substâncias Luminescentes/química , Ácido Palmítico/química , Polietilenoimina/química , Pontos Quânticos , Concentração de Íons de Hidrogênio , Nanotecnologia/métodos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA