Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575131

RESUMO

Objective: The object of this study was to investigate the effect of replacing soybean meal with Clostridium autoethanogenum protein (CAP) in broiler diets on growth performance, blood indicators, antioxidant capacity, and immune function. Methods: A total of 180 Arbor Acres broilers were randomly divided into three treatments, each treatment with six replicates and 10 broilers per replicate for a 42-day feeding trial. The control group (CON) was fed corn-soybean meal based diet. The CAP-1 and CAP-2 groups were considered to use CAP to replace 25% or 50% of soybean meal in the diet, respectively. The average daily gain and average daily feed intake of broilers at 1-21 d, 22-42 d, and 1-42 d were measured, and the feed conversion ratio was calculated. At the 42nd day of age, two broilers with similar weights and fasted for 12h were selected in each replicate for blood collection from the brachial wing vein. The blood routine indicators, serum biochemical indicators, serum antioxidant capacity, and immunoglobulin content of broiler chickens were measured. Results: Replacement of soybean meal with 25% (CAP-1) and 50% (CAP-2) CAP significantly increased the average daily gain of 22-42 d and 1-42 d and decreased the average daily feed intake and feed conversion rate (p<0.05). The CAP-1 group, and CAP-2 group significantly increased hemoglobulin in the blood of broilers, while the CAP-2 group increased hematocrit content (p<0.05). Compared with the control group, the contents of superoxide dismutase and immunoglobulin A in serum of the CAP-2 group were significantly increased, while the contents of malondialdehyde in CAP group were significantly decreased (p<0.05). Conclusion: Replacing soybean meal with CAP led to significant improvements in the growth performance, antioxidant capacity, and immunoglobulin content of broilers.

2.
Animals (Basel) ; 14(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338019

RESUMO

A ten-week trial was conducted to evaluate the enhancement of production performance and nutrient utilization of laying hens through augmenting energy, phosphorous, and calcium deficient diets with fungal phytase (Trichoderma reesei) supplementation. 720 Hy-line Brown hens aged 28 weeks were randomly divided into 5 groups; each group had 8 replicates of 18 hens. Five experimental diets were prepared and fed to corresponding groups. A positive control (PC) diet contained 3.50% of calcium (Ca), 0.32% of non-phytate phosphorus (NPP), and apparent metabolic energy (AME) of 11.29MJ/kg, while a negative control (NC) diet contained 3.30% of Ca, 0.12% of NPP, and lower AME of 300 kJ/kg. The other three diets were supplemented with 250 FTU/kg phytase (PHY-250), 1000 FTU/kg phytase (PHY-1000), and 2000 FTU/kg phytase (PHY-2000) in addition to a regular NC diet. Results indicated that the positive control (PC) diet group had higher body weight gain, egg weight, and average daily feed intake. However, laying rate, egg mass, and FCR were most improved in the PHY-2000 group, followed by the PHY-1000 and PHY-250 groups (p < 0.05). Improved yolk color was most notable in laying hens fed the diet with PHY-1000 as opposed to the PC and NC groups (p < 0.05), but no overall difference was found among all of the phytase treated groups. The apparent availability of dry matter, energy, phosphorus, and phytate P was significantly higher in the PHY-2000 group than in the PC and NC groups (p < 0.05). Compared to the PC group, nitrogen retention was significantly higher in the PHY-1000 group, while calcium availability was higher in the PHY-250 group. The results suggested that the addition of phytase to diets with low P, Ca, and AME improved laying performance and apparent availability of dietary nutrients. Thus, it was concluded that the laying hen diet could be supplemented with 1000-2000 FTU/kg phytase for improving laying production and nutrient availability and mitigating the negative impact of reduced nutrient density in laying hen diets.

3.
Animals (Basel) ; 13(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067057

RESUMO

Cottonseed protein concentrate (CPC) has the function of replacing soybean meal to maintain normal animal growth and development. This study involved 180 Arbor Acres (AA) broilers, which were randomly assigned to three different treatments. Each treatment had six replicates, with each replicate consisting of 10 chicks. The control group was fed a basal diet, while the CPC-1 and CPC-2 groups used CPC to replace 25% and 50% of the soybean meal in the basal diet, respectively. The study showed that replacing soybean meal with 25% CPC in broilers' diets can maintain normal growth, while substituting 50% of soybean meal with CPC negatively affects the growth and development of broiler chickens. Furthermore, the CPC-1 group showed a significant increase in serum total antioxidant capacity, superoxide dismutase enzyme activity, and immunoglobulin content, along with a decrease in malondialdehyde content. Based on the research results mentioned above, it was speculated that CPC has the potential to replace around 25% of soybean meal in broiler feed without causing any negative impact on growth performance. This suggests that CPC could be a viable alternative to soybean meal in broiler diet.

4.
Animals (Basel) ; 13(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136867

RESUMO

Selenium (Se) yeast, a bioavailable form of selenium, exhibits enhanced bioavailability due to its unique organic matrix and superior metabolic availability compared to the inorganic selenium sources. This study aims to evaluate the effects of Se yeast on the growth performance, slaughter performance, antioxidant capacity, and Se deposition in broiler chickens. A total of 264 1-day-old male AA broilers (38.7 ± 0.1 g) were randomly assigned to four treatment groups, with six replicates of 11 chickens per replicate. The broilers were fed a basal diet or a diet supplemented with 0.1, 0.2, and 0.4 mg/kg Se yeast. The experiment lasted for 42 days. Although the results showed that Se yeast did not significantly improve the growth performance of broilers, it did significantly decrease the abdominal fat ratio. Additionally, supplementation of Se yeast significantly improved the antioxidant capacity of broilers. The quadratic regression models were used to simulate the relationship between Se content in the feed and Se deposition in broiler tissues. The regression equations were as follows: pectoral muscle, Y = 2.628X - 0.340X2 - 0.592 (R2 = 0.927); leg muscle, Y = 2.317X - 0.272X2 - 0.490 (R2 = 0.937); liver, Y = 3.357X - 0.453X2 - 0.493 (R2 = 0.961); kidney, Y = 4.084X - 0.649X2 + 0.792 (R2 = 0.932). Based on these findings, the Se deposition in broiler tissues can be predicted by the Se content of the additive, which is of great significance for the precise production of Se-enriched functional chicken products.

5.
Front Vet Sci ; 10: 1162811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303727

RESUMO

This study aimed to investigate the effects of compound non-starch polysaccharide (NSP) enzymes on growth performance, slaughter performance, immune function, and apparent utilization of nutrients in broiler chickens fed a low-metabolizable energy diet. A total of 240 healthy 1-day-old AA broilers (Arbor Acres, 47.2 ± 0.31 g) were randomly divided into four treatment groups, each with six replicate groups and 10 broilers per replicate. The control group was fed a basal diet; the EL-H group was fed the basal diet supplemented with 200 mg/kg compound NSP enzyme, including ß-mannanase 5,000 IU/g, ß-glucanase 2000 IU/g, xylanase 10,000 IU/g, and cellulase 500 IU/g. The EL-M group was fed the basal diet with 50 kcal/kg metabolizable energy removed, supplemented with 200 mg/kg compound NSP enzyme. Finally, the EL-L group was fed the basal diet with 100 kcal/kg metabolizable energy removed, supplemented with 200 mg/kg compound NSP enzyme. The results showed that feeding with a low-metabolizable energy diet supplemented with compound NSP enzymes did not significantly affect the growth performance of broilers (p > 0.05). Compared with the control group, the abdominal fat rate of broilers in the EL-L group was significantly reduced, and that of broilers in the EL-M group was significantly increased (p < 0.05). Apparent utilization of dry matter, crude protein, and energy in the diet was lower in the control group than in the EL-L group, but significantly higher in the control group than in the EL-H group (p < 0.05). In addition, apparent utilization of crude fiber was significantly increased in the EL-H, EL-M, and EL-L groups compared with the control group (p < 0.05). In conclusion, this experiment showed that the addition of 200 mg/kg compound NSP enzyme enabled maintenance of the normal growth and development of broiler chickens fed a low-metabolizable energy diet (replacing 50-100 kcal/kg metabolizable energy). This study provides a theoretical basis for the application of the compound NSP enzyme in broiler chickens.

6.
Front Vet Sci ; 10: 1132189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256002

RESUMO

This study aimed to determine the ideal balance profile of Cu, Fe, Zn, and Mn for broilers of 1-21 days of age via a uniform experimental design. In Experiment 1, 900 1-day-old Arbor Acres male broilers were randomly allotted to 15 dietary treatments with six replicates of 10 birds. A total of 14 experimental diets were formulated with the supplementation of 8~16, 123~160, 40~80, and 60~120 mg/kg of Cu, Fe, Zn, and Mn, respectively, in the basal diet, according to the uniform design method. The excretion of Cu, Fe, Zn, and Mn in the manure and the broiler performance were determined to build the ideal balance profile of these elements. Experiment 2 was conducted based on the ideal balance profile built in Experiment 1, to test its practicability using 720 broilers with two treatments. The dietary concentrations of Cu, Fe, Zn, and Mn in the control group were 15.19, 203.08, 76.78, and 86.13 mg/kg, respectively. In Experiment 1, the concentrations of Cu, Fe, Zn, and Mn in the diets were 16.96, 166.66, 46.01, and 60.26 mg/kg, respectively, when the average daily gain reached the optimum value. When the dietary concentrations of Cu, Fe, Zn, and Mn were 8.54, 130.66, 38.19, and 64.07 mg/kg, respectively, the total excretion of Cu, Fe, Zn, and Mn got the minimum value. There are corresponding ideal balance profiles for minimum excretion of a certain element. In Experiment 2, the dietary levels of Fe, Zn, and Mn were decreased by 17.93%, 40.08%, and 30.04%, respectively, which had no significant effect on average daily gain, average daily feed intake, and feed gain for 1~21 day-old broilers but markedly decreased the excretion of Cu and Mn and total excretion. It was concluded that there is a dilemma between growth performance and mineral excretion. Although dietary levels of Cu, Fe, Zn, and Mn supporting optimal growth are higher than those for minimizing mineral excretion, supplementing too many trace elements in the diets of broilers is unnecessary.

7.
Front Microbiol ; 14: 1143265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138616

RESUMO

Bacillus spp. have gained increasing recognition as an option to use as antimicrobial growth promoters, which are characterized by producing various enzymes and antimicrobial compounds. The present study was undertaken to screen and evaluate a Bacillus strain with the multi-enzyme production property for poultry production. LB-Y-1, screened from the intestines of healthy animals, was revealed to be a Bacillus velezensis by the morphological, biochemical, and molecular characterization. The strain was screened out by a specific screening program, possessed excellent multi-enzyme production potential, including protease, cellulase, and phytase. Moreover, the strain also exhibited amylolytic and lipolytic activity in vitro. The dietary LB-Y-1 supplementation improved growth performance and tibia mineralization in chicken broilers, and increased serum albumin and serum total protein at 21 days of age (p < 0.05). Besides, LB-Y-1 enhanced the activity of serum alkaline phosphatase and digestive enzyme in broilers at 21 and 42 days of age (p < 0.05). Analysis of intestinal microbiota showed that a higher community richness (Chao1 index) and diversity (Shannon index) in the LB-Y-1 supplemented compared with the CON group. PCoA analysis showed that the community composition and structure were distinctly different between the CON and LB-Y-1 group. The beneficial genera such as Parasutterella and Rikenellaceae were abundant, while the opportunistic pathogen such as Escherichia-Shigella were reduced in the LB-Y-1 supplemented group (p < 0.05). Collectively, LB-Y-1 can be considered as a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.

8.
Anim Nutr ; 13: 324-333, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37207112

RESUMO

Astaxanthin (Ax) and lutein are important fat-soluble pigments and essential nutrients for human and animal health. Haematococcus pluvialis microalga and Phaffia rhodozyma yeast are ideal species for commercial Ax production. Marigold flowers are a main source of commercial lutein. Dynamics of dietary Ax and lutein in the gastrointestinal tract are similar to lipids, but their activities are tremendously challenged by many physiological and dietary factors; few data are available about these in poultry. Dietary Ax and lutein have insignificant effects on egg production and egg physical properties, but have pronounced effects on yolk color, nutrition, and functionality. The two pigments can also enhance antioxidative capacity and immune function of laying hens. A few studies have shown that Ax and lutein can improve fertilization and hatchability of laying hens. Considering the pigmentation and health benefits of Ax and lutein from hen feed to human food, the commercial availability, chicken yolk improvement, and immune function of Ax and lutein are the focuses of this review. The potential roles of carotenoids in the cytokine storm and gut microbiota are also briefly presented. The bioavailability, metabolism, and deposition of Ax and lutein in laying hens are suggested for future research.

9.
Antioxidants (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829774

RESUMO

Growing interest has been focused on lactic acid bacteria as alternatives to antimicrobial growth promoters, which are characterized by the production of various functional metabolites, such as antimicrobial and antioxidants compounds. The present study was undertaken to evaluate a potential probiotic from the antioxidant perspective. LC-9-1, screened from the intestines of healthy animals, was revealed to be Pediococcus acidilactici on the basis of its morphological, biochemical, and molecular characteristics. The strain has excellent properties, including acid-production efficiency, antibacterial performance and antioxidant activity. The safety of the strain was also evaluated. Furthermore, the experiments in broiler chickens suggested that dietary LC-9-1 supplementation improved the growth performance and decreased the abdominal fat, and enhanced the antioxidant capability and intestinal innate immunity of broilers. Analysis of intestinal microbiota showed that a higher community diversity (Shannon index) was achieved. In addition to the significantly increased relative abundances of Pediococcus spp., beneficial genera such as Rothia spp. and Ruminococcus spp. were abundant, while opportunistic pathogens such as Escherichia-Shigella spp. were significantly reduced in LC-9-1-supplemented broilers. Collectively, such in-depth characterization and the available data will guide future efforts to develop next-generation probiotics, and LC-9-1 could be considered a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.

10.
Animals (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290256

RESUMO

We investigated the effects of fermenting the plant fraction of a solid complete feed (FPFF) on the growth performance, nutrient utilization, meat quality, antioxidant status, and intestinal microbiota of broiler chickens. The plant-based fraction of the complete feed was fermented using Lactobacillus and Bacillus subtilis. A total of 240, 1-day-old male Arbor Acres broilers were randomly allocated into four treatment groups, each comprised of six replicates. The groups were fed a corn-soybean meal-based diet (basic diet) or the same diet supplemented with 5%, 10%, or 15% FPFF for 6 weeks. As results, adding 10% fermented feed significantly improved the growth performance in 1-21 days, and adding 5% fermented feed significantly improved the growth performance in 1-42 days. Adding 15% fermented feed significantly improved the metabolic rate of the birds in 19-21 days and significantly increased the monounsaturated fatty acid concentration in the chickens. Adding fermented feed significantly reduced the cholesterol content in the chickens. In conclusion, adding 10% fermented feed significantly reduced the feed conversion ratio in 1-21 days and adding 5% fermented feed significantly improved the average daily gain and the average daily feed intake in 1-42 days. In addition, consuming fermented feed improved the meat quality of broilers.

11.
Animals (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290269

RESUMO

Automatic species recognition plays a key role in intelligent agricultural production management and the study of species diversity. However, fine-grained species recognition is a challenging task due to the quite diverse and subtle interclass differences among species and the long-tailed distribution of sample data. In this work, a peer learning network with a distribution-aware penalty mechanism is proposed to address these challenges. Specifically, the proposed method employs the two-stream ResNeSt-50 as the backbone to obtain the initial predicted results. Then, the samples, which are selected from the instances with the same predicted labels by knowledge exchange strategy, are utilized to update the model parameters via the distribution-aware penalty mechanism to mitigate the bias and variance problems in the long-tailed distribution. By performing such adaptive interactive learning, the proposed method can effectively achieve improved recognition accuracy for head classes in long-tailed data and alleviate the adverse effect of many head samples relative to a few samples of the tail classes. To evaluate the proposed method, we construct a large-scale butterfly dataset (named Butterfly-914) that contains approximately 72,152 images belonging to 914 species and at least 20 images for each category. Exhaustive experiments are conducted to validate the efficiency of the proposed method from several perspectives. Moreover, the superior Top-1 accuracy rate (86.2%) achieved on the butterfly dataset demonstrates that the proposed method can be widely used for agricultural species identification and insect monitoring.

12.
Antioxidants (Basel) ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36290674

RESUMO

Bacillus subtilis has been widely used in animal husbandry as a potential alternative to antibiotics due to its excellent bacteriostasis and antioxidant activity. This study aims to investigate the effects of Bacillus subtilis on the protection of ducks from Escherichia coli infection and its mechanism. The four experimental groups include the negative control group, positive control group, antibiotic group and Bacillus subtilis group. Ducks in positive, antibiotic and Bacillus subtilis groups are orally administered with Escherichia coli and equivalent saline solution for the negative group. The results show that supplements with Bacillus subtilis enhances the performance and health status of the infected ducks. Moreover, Bacillus subtilis alleviates the increase in globulin, LPS and MDA, and the decrease in albumin, T-AOC and T-SOD in the serum caused by Escherichia coli infection. Bacillus subtilis also attenuates injury in the intestine and partially reverses the increase in ROS production and the depletion of ATP in the jejunum. These effects are accompanied with the change of related genes of the ribosome (13.54%) and oxidative phosphorylation (6.68%). Collectively, Bacillus subtilis alleviates the damage caused by Escherichia coli infection in ducks by activating ribosome and oxidative phosphorylation signaling to regulate antioxidant and energy metabolism.

13.
Front Cell Infect Microbiol ; 12: 940847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061867

RESUMO

Colibacillosis is one of the major health threats in the poultry industry worldwide. Understanding the pathogenic mechanisms involved in Escherichia coli-induced inflammatory response may lead to the development of new therapies to combat the disease. To address this, a total of 96 1-day-old male lean Pekin ducklings were employed and randomly allocated to two treatments, each with six replicates of eight ducks. Ducks in the experiment group (EG) and the control group (CG) were separately orally administered with 0.2 ml of pathogenic E. coli O88 (3 × 109 CFU/ml) or equivalent volumes of 0.9% sterile saline solution on day 7, two times with an 8-h interval. Serum and intestinal samples were collected on days 9, 14, and 28. Results showed that ducks challenged with E. coli had lower average daily gain and higher feed intake/weight gain during days 9-14 and overall (P < 0.05). Histopathological examination showed that E. coli decreased the villus height and the ratio of villus height/crypt depth in the jejunum (P < 0.05) on days 9 and 14. The intestinal barrier was disrupted, presenting in E. coli ducks having higher serum DAO and D-LA on days 9 and 14 (P < 0.05) and greater content of serum LPS on day 9 (P < 0.05). Escherichia coli infection also triggered a systemic inflammatory response including the decrease of the serum IgA, IgM, and jejunal sIgA on day 14 (P < 0.05). In addition to these, 1,062 differentially expressed genes were detected in the jejunum tissues of ducks by RNA-seq, consisting of 491 upregulated and 571 downregulated genes. Based on the KEGG database, oxidative phosphorylation and the ribosome pathway were the most enriched. These findings reveal the candidate pathways and genes that may be involved in E. coli infection, allow a better understanding of the molecular mechanisms of inflammation progression and may facilitate the genetic improvement of ducks, and provide further insights to tackle the drug sensitivity and animal welfare issues.


Assuntos
Patos , Escherichia coli , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Masculino , Fosforilação Oxidativa , Ribossomos
14.
Poult Sci ; 101(11): 102126, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099660

RESUMO

Bone health of broiler chickens is essential for welfare and production. In this study, the probiotic Bacillus amyloliquefaciens (BA) CGMCC18230 was compared with antimicrobial growth promoters (AGPs) for its ability to promote growth and bone health. To address this, a total of 180 Arbor Acres (AA) 1-day-old, male, broiler chicks were randomly allocated into 3 treatment groups, with 6 replicates, containing 10 chicks in each replicate. The treatment groups were: control group (CON) fed a corn-soybean based diet; BA treatment group fed the basal diet supplemented with 2.5 × 1010 CFU/kg BA CGMCC18230; AGPs treatment group was fed the basal diet containing the antibiotics aureomycin (75 mg/kg), flavomycin (5 mg/kg) and kitasamycin (20 mg/kg). Over the 42 d experiment, broilers fed BA and AGPs diets both had higher BW, and the ADG was significantly (P < 0.05) higher than that of the CON group both in the grower phase (22-42 d) and overall. Moreover, with BA birds had higher (P < 0.05) serum concentrations of phosphorus (P, day 42) and alkaline phosphatase (ALP, days 21 and 42). Conversely, the content of P in excreta decreased significantly (P < 0.05) on days 21 and 42. Tibia bone mineralization was improved in BA, and the mRNA of P transport related genes PiT-1,2 in the duodenum and jejunum were significantly up-regulated in the BA group than in the CON group (P < 0.05). 16S rRNA gene sequencing revealed that dietary BA supplementation increased the relative abundance of butyrate-producing bacteria (Ruminococcaceae) and polyamine-producing bacteria (Akkermansia and Alistipes), which had a positive effect on bone development. These data show that dietary supplementation of BA CGMCC18320 improves broiler growth performance and bone health similar to supplementation with AGPs through up-regulation of intestinal P transporters, microbial modulation and increase P retention. However, no significant influence of BA CGMCC18320 supplementation on the retention of Ca was found.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Microbiota , Animais , Masculino , Galinhas/fisiologia , Ração Animal/análise , Fósforo/metabolismo , RNA Ribossômico 16S/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Desenvolvimento Ósseo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
15.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 296-307, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34160113

RESUMO

We evaluated the effect of fermented and raw rapeseed meal (FRCM and RRSM) on the growth performance, carcass traits, serum biochemical indexes, immune status and intestinal morphology of broilers. A total of 420-day-old Arbor Acre male broilers were randomly assigned to a 1 + 2 × 3 factorial arrangement with one basal diet group, two rapeseed meal (RSM) varieties (FRCM and RRSM) and three addition levels (5%, 10% and 15%) for a duration of 42 days. FRSM significantly increased the ADG and ADFI of broilers during the 22-42 days and 1-42 days (p < 0.05) growth periods compared with RRSM groups. No significant difference was observed in ADG and ADFI between broilers fed FRSM in different dietary levels and control diets (p > 0.05), but broilers fed diet with 15% RRSM showed significantly lower ADG, ADFI and spleen index (p < 0.05). Both FRSM and RRSM in different dietary levels affected the anti-oxidation function of broilers, including a significant increase in the serum contents of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) (p < 0.05), and a significant decrease of malondialdehyde (MDA) (p < 0.05). Fermentation tends to increase the villus height of duodenum (p = 0.09), and significantly increased the villus height and V/C ratio of duodenum (p < 0.05) in birds. The duodenum villus height was the highest in the 5% FRSM group and lowest in birds of 5% RRSM group. A 10% level significantly increased the duodenal V/C ratio in both FRSM and RRSM birds. The results indicated that FRSM could be used to supplemented in broilers diet to improve the production performance and maintain good health. FRSM can be added to broilers diet at 10% without adverse effect on growth performance or immune function.


Assuntos
Brassica napus , Galinhas , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais
16.
J Anim Sci Biotechnol ; 12(1): 90, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253261

RESUMO

BACKGROUND: Immunological stress decreases feed intake, suppresses growth and induces economic losses. However, the underlying molecular mechanism remains unclear. Label-free liquid chromatography and mass spectrometry (LC-MS) proteomics techniques were employed to investigate effects of immune stress on the hepatic proteome changes of Arbor Acres broilers (Gallus Gallus domesticus) challenged with Escherichia coli lipopolysaccharide (LPS). RESULTS: Proteomic analysis indicated that 111 proteins were differentially expressed in the liver of broiler chickens from the immune stress group. Of these, 28 proteins were down-regulated, and 83 proteins were up-regulated in the immune stress group. Enrichment analysis showed that immune stress upregulated the expression of hepatic proteins involved in defense function, amino acid catabolism, ion transport, wound healing, and hormone secretion. Furthermore, immune stress increased valine, leucine and isoleucine degradation pathways. CONCLUSION: The data suggests that growth depression of broiler chickens induced by immune stress is triggered by hepatic proteome alterations, and provides a new insight into the mechanism by which immune challenge impairs poultry production.

17.
Poult Sci ; 100(9): 101323, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34280647

RESUMO

We studied the effects of Lactobacillus acidophilus (L. acidophilus) on the growth performance, intestinal morphology, barrier function, and immune response of broilers challenged with Escherichia coli O157 (E. Coli). A total of 360 1-day-old Cobb male broilers were tested in a 3 × 2 factorial arrangement with 3 dietary L. acidophilus levels (0, 5 × 108 CFU/kg, and 10 × 108 CFU/kg of diet) and 2 disease challenge treatments (control or E. coli challenged). Results showed that E. coli challenge decreased the ADG, ADFI, and BW of broilers from 15 to 21 d (P < 0.05), increased the jejunum intestinal wall thickness, and significantly increased the mortality rate. E. coli challenge significantly (P < 0.05) decreased the serum IgA and IgM contents and peripheral blood CD3+ T cell counts (P < 0.05), increased the serum CRP, DAO, and LPS levels at 21 d; upregulated the mRNA expression of iNOS, IL-8, IL-1ß in the jejunum and iNOS in the spleen, and downregulated the occludin and ZO-1 mRNA expression in the ileum at 21 d compared with uninfected birds (P < 0.05). Dietary L. acidophilus supplementation consistently showed higher BW, ADG, ADFI, and jejunum and ileum V:C ratio at 14 d and 21 d in the presence and absence of E. coli challenge (P < 0.05). L. acidophilus supplementation reduced the mortality rate caused by E. coli challenge (P < 0.05), decreased the serum CRP, DAO, and LPS levels at 14 d and 21 d; upregulated the mRNA expression of occludin and ZO-1 in the jejunum and ileum, and downregulated the mRNA expression of iNOS, IL-8, and IL-1ß in the jejunum in E. coli challenged birds at 21 d (P < 0.05). Dietary supplementation with L. acidophilus can improve the growth performance, intestinal health, and survival of broilers challenged with E. coli.


Assuntos
Escherichia coli O157 , Probióticos , Ração Animal/análise , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais , Imunidade , Lactobacillus acidophilus , Masculino
18.
Poult Sci ; 99(12): 6549-6558, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248570

RESUMO

The negative effects of dietary antibiotics have become a widespread concern. It is imperative to search for a new type of green, safe, and efficient feed additive that can replace antibiotics. This study was to investigate the effects of glucose oxidase (GOD) on growth performance, immune function, and intestinal barrier in ducks infected with Escherichia coli O88. First, we established the E. coli challenge model of ducks through a preliminary experiment and then carried out the formal experiment by using 144 1-day-old male lean Peking ducklings (50 ± 2.75 g). All ducks were randomly assigned to 1 of 3 dietary treatment groups of basal diet (control), 30 mg/kg virginiamycin (antibiotic), and 200 U/kg GOD (1,000 U/g). Each group consisted of 6 replications with 8 birds per replicate. At day 7, all ducks were orally administered 0.2 mL E coli O88 (3 × 109 cfu/mL) twice, 8 h apart based on the preliminary experiment. The experiment lasted for 28 d. Dietary supplementation with GOD improved growth performance of ducks infected with E. coli. The GOD increased contents of Ig in plasma and secreted Ig A in jejunal mucosa. The GOD group had lower concentrations of inflammatory cytokines (tumor necrosis factor-α, IL-1ß, and IL-6) and their upstream regulator Toll-like receptor 4 in the jejunum of ducks than the control group. Supplementation with GOD increased villus height and decreased crypt depth in the jejunum. The gene expression of tight junction proteins (zonula occludens-1, claudin-1 and claudin-2) was enhanced by adding GOD. The GOD decreased intestinal permeability by reducing the concentrations of diamine oxidase and D-lactic in plasma of ducks. There were no significant differences in almost all the indices tested between the GOD and the antibiotic groups. In conclusion, supplementation of GOD improved growth performance, immune function, and intestinal barrier of ducks infected with E. coli O88. Glucose oxidase may serve as a promising alternative therapy to antibiotics to relieve or prevent colibacillosis in ducks.


Assuntos
Suplementos Nutricionais , Patos , Infecções por Escherichia coli , Glucose Oxidase , Imunidade , Mucosa Intestinal , Doenças das Aves Domésticas , Animais , Dieta/veterinária , Patos/crescimento & desenvolvimento , Patos/imunologia , Escherichia coli , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/veterinária , Glucose Oxidase/administração & dosagem , Glucose Oxidase/farmacologia , Imunidade/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Masculino , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/terapia , Distribuição Aleatória
19.
Animals (Basel) ; 10(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019513

RESUMO

Rapeseed meal (RSM) is a common protein ingredient in animal diets, while the proportion of RSM in diets is limited because of its anti-nutritional factors. Fermentation based on mixed microbial strains appears to be a suitable approach to improve the nutritive value of rapeseed meal in animal feed. In this study, we evaluated the effects of fermentation on the apparent metabolizable energy (AME) values and standardized ileal digestibility (SID) of amino acids in RSM fed broilers. The AME and nitrogen-corrected apparent metabolizable energy (AMEn) values of RSM and fermented rapeseed meal (FRSM) were determined by the substitution method, with RSM and FRSM proportionally replacing the energy-yielding components of the basal diet by 30%. Results show that fermentation improved AME and AMEn of RSM from 7.44 to 8.51 MJ/kg and from 7.17 to 8.26 MJ/kg, respectively. In the second experiment, two experimental diets were formulated, with RSM and FRSM being the sole sources of amino acids. A nitrogen-free diet (NFD) was also formulated to determine endogenous amino acids losses (EAAL). Feeding on FRSM resulted in higher (p < 0.05) apparent ileal digestibility (AID) and SID of alanine, valine, isoleucine, leucine, tyrosine, lysine, arginine, and phenylalanine. No significant differences between RSM and FRSM were found for AID and SID of asparagine, histidine, threonine, serine, glutamine, praline, glycine, methionine, and cystine. FRSM had greater AMEn values and SID of amino acids compared to RSM, therefore, FRSM was nutritionally superior to RSM in broiler diets.

20.
Animals (Basel) ; 10(8)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824750

RESUMO

Many factors contribute to the stress of transporting broilers from the farm to the processing plant. Using a motion simulation machine, a total of 144 male broilers were employed to determine the effect of motion, vibration, and feed withdrawal during transportation on serum biochemical parameters, postmortem muscle metabolism, and meat quality of broilers. The results indicated that transportation did not affect the activity of lactate dehydrogenase, γ-glutamyl transferase, aspartate aminotransferase, creatine kinase, and glucose in the serum, glutathione peroxidase in the breast and thigh muscle, nitric oxide synthase (NOS) in the breast, and heat stress protein 70 mRNA expression level in the liver (p > 0.05). Serum triiodothyronine, thyroxine, and insulin concentration declined with 2 h transportation (p < 0.05) and recovered with 4 h transportation (p < 0.05). NOS concentration in the thigh increased with 2 h transportation (p < 0.05) and recovered with 4 h transportation (p < 0.05). Two-hour and 4 h transportation increased the activity of superoxide dismutase in both muscles. Malondialdehyde, lactic acid, and drip loss24 h in both thigh and breast muscles increased, and glycogen in both muscles decreased with increasing transportation times (p < 0.05). Two-hour transportation did not influence pH45 min and pH24 h in the breast and thigh muscle, but these indexes decreased with 4 h transportation. This experiment supports and extends previous work that identified transportation as a major risk in relation to bird welfare and meat quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA