Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
ACS Med Chem Lett ; 15(6): 864-872, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894924

RESUMO

We were attracted to the therapeutic potential of inhibiting Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING E3 ligase that plays a critical role in regulating the activation of T cells. However, given that only protein-protein interactions were involved, it was unclear whether inhibition by a small molecule would be a viable approach. After screening an ∼6 billion member DNA-encoded library (DEL) using activated Cbl-b, we identified compound 1 as a hit for which the cis-isomer (2) was confirmed by biochemical and surface plasmon resonance (SPR) assays. Our hit optimization effort was greatly accelerated when we obtained a cocrystal structure of 2 with Cbl-b, which demonstrated induced binding at the substrate binding site, namely, the Src homology-2 (SH2) domain. This was quite noteworthy given that there are few reports of small molecule inhibitors that bind to SH2 domains and block protein-protein interactions. Structure- and property-guided optimization led to compound 27, which demonstrated measurable cell activity, albeit only at high concentrations.

2.
Epigenomics ; : 1-17, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38869474

RESUMO

Aim: Liquid biopsies analyzing cell-free DNA (cfDNA) methylation in plasma offer a noninvasive diagnostic for diseases, with the potential of aging biomarkers underexplored. Methods: Utilizing enzymatic methyl-seq (EM-seq), this study assessed cfDNA methylation patterns in aging with blood from 35 healthy individuals. Results: It found aging signatures, including higher cfDNA levels and variations in fragment sizes, plus approximately 2000 age-related differentially methylated CpG sites. A biological age predictive model based on 48 CpG sites showed a strong correlation with chronological age, verified by two datasets. Age-specific epigenetic shifts linked to inflammation were revealed through differentially methylated regions profiling and Olink proteomics. Conclusion: These findings suggest cfDNA methylation as a potential aging biomarker and might exacerbate immunoinflammatory reactivity in older individuals.


Our bodies undergo many changes as we age, some of which might affect our health. To better understand these changes, scientists study something called 'cell-free DNA' (cfDNA) in our blood. This cfDNA can give us clues about our health and the risk of diseases like cancer or heart conditions.In our research, we analyzed cfDNA from the blood of 35 people to identify patterns associated with aging. We discovered that approximately 2000 specific spots in our DNA change in a way that's linked to aging. These changes might help us figure out someone's biological age ­ essentially, how old their body seems based on various health factors, which can differ from their actual age.We also found that these DNA changes could indicate how aging might make the body's defense system ­ which fights off diseases ­ react more intensely. Understanding this could be crucial for managing health as we get older.Our study suggests that cfDNA could be a useful marker for aging, offering a new approach to understanding and possibly managing the health effects associated with growing older.

3.
Biomed Pharmacother ; 175: 116421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719708

RESUMO

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.


Assuntos
Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A , Interações Medicamentosas , Flavonoides , Microssomos Hepáticos , Piperidinas , Pirimidinas , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Animais , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Ratos , Piperidinas/farmacologia , Piperidinas/farmacocinética , Piperidinas/metabolismo , Polimorfismo Genético , Pirróis/farmacologia , Pirróis/metabolismo
4.
Vet Parasitol ; 328: 110193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704976

RESUMO

In prokaryotes and lower eukaryotes, 2-methylcitrate cycle (2-MCC) is the main pathway for propionate decomposition and transformation, but little is known about the 2-MCC pathway of Eimeria tenella. The analysis of genomic data found that the coding gene of 2- methylcitrate synthase (EC 2.3.3.5, PrpC) exists in E. tenella, which is a key enzyme of 2-MCC pathway. Through the search analysis of the database (ToxoDB), it was found that ETH_ 00026655 contains the complete putative sequence of EtprpC. In this study, we amplified the ORF sequence of EtprpC based on putative sequence. Then, prokaryotic expression, enzyme activity and kinetic analysis was performed. The results showed that the EtprpC ORF sequence was 1272 bp, encoding a 46.3 kDa protein comprising 424 amino acids. Enzyme activity assays demonstrate linearity between the initial reaction rate (OD/min) and EtPrpC concentration (ranging from 1.5 to 9 µg/reaction), with optimal enzyme activity observed at 41°C and pH 8.0. The results of enzymatic kinetic analysis showed that the Km of EtPrpC for propionyl-CoA, oxaloacetic acid, and acetyl-CoA was 5.239 ± 0.17 mM, 1.102 ± 0.08 µM, and 5.999 ± 1.24 µM, respectively. The Vmax was 191.11 ± 19.1 nmol/min/mg, 225.48 ± 14.4 nmol/min/mg, and 370.02 ± 25.8 nmol/min/mg when EtPrpC concentration at 4, 6, and 8 µg, respectively. Although the ability of EtPrpC to catalyze acetyl-CoA is only 0.11% of its ability to catalyze propionyl-CoA, it indicates that the 2-MCC pathway in E. tenella is similar to that in bacteria and may have a bypass function in the TCA cycle. This study can provide the theoretical foundation for the new drug targets and the development of new anticoccidial drugs.


Assuntos
Clonagem Molecular , Eimeria tenella , Eimeria tenella/enzimologia , Eimeria tenella/genética , Cinética , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Sequência de Aminoácidos , Citratos/metabolismo
5.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782919

RESUMO

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


Assuntos
RNA Helicases DEAD-box , Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Humanos , Camundongos , Apoptose/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Homeostase/genética , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
7.
Front Cardiovasc Med ; 11: 1384679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807946

RESUMO

Background: Platelet hyperreactivity is a risk factor for thrombosis in elderly patients with cardiovascular diseases. However, the mechanism of platelet hyperactivation has not been elucidated. This study aims to investigate alterations in the proteomes of platelets and their correlation with platelet hyperreactivity among elderly individuals. Methods: This study included 10 young (28.1 ± 1.9 years), 10 middle-aged (60.4 ± 2.2 years), and 10 old (74.2 ± 3.0 years) subjects. Washed platelets were used in the present study. Platelet samples were analysed by using data-independent acquisition (DIA) quantitative mass spectrometry (MS). Results: The results showed that the platelet proteomic profile exhibited high similarity between the young and middle-aged groups. However, there were significant differences in protein expression profiles between the old group and the young group. By exploring the dynamic changes in the platelet proteome with ageing, clusters of proteins that changed significantly with ageing were selected for further investigation. These clusters were related to the initial triggering of complement, phagosome and haemostasis based on enrichment analysis. We found that platelet degranulation was the major characteristic of the differentially expressed proteins between the old and young populations. Moreover, complement activation, the calcium signalling pathway and the nuclear factor-κB (NF-κB) signalling pathway were enriched in differentially expressed proteins. Conclusions: The present study showed that there are obvious differences in the protein profiles of the elderly compared with young and middle-aged populations. The results provide novel evidence showing changes in platelet hyperactivity and susceptibility to thrombosis in the elderly population.

8.
Heliyon ; 10(7): e28952, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596098

RESUMO

Amino acid variants in protein may result in deleterious effects on enzymatic activity. In this study we investigate the DNA variants on activity of CYP2B6 gene in a Chinese Han population for potential use in precision medicine. All exons in CYP2B6 gene from 1483 Chinese Han adults (Zhejiang province) were sequenced using Sanger sequencing. The effects of nonsynonymous variants on recombinant protein catalytic activity were investigated in vitro with Sf12 system. The haplotype of novel nonsynonymous variants with other single nucleotide variants in the same allele was determined using Nanopore sequencing. Of 38 alleles listed on the Pharmacogene Variation Consortium, we detected 7 previously reported alleles and 18 novel variants, of which 11 nonsynonymous variants showed lower catalytic activity (0.00-0.60) on bupropion compared to CYP2B6*1. Further, these 11 novel star-alleles (CYP2B6*39-49) were assigned by the Pharmacogene Variation Consortium, which may be valuable for pharmacogenetic research and personalized medicine.

9.
Pharmacogenomics J ; 24(3): 13, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637522

RESUMO

To investigate the pharmacokinetic and pharmacodynamic profiles of volunteers carrying CYP2D6 genotypes with unknow metabolic phenotypes, a total of 22 volunteers were recruited based on the sequencing results. Peripheral blood and urine samples were collected at specific time points after oral administration of metoprolol. A validated high-performance liquid chromatography (HPLC) method was used to determine the concentrations of metoprolol and α-hydroxymetoprolol. Blood pressure and electrocardiogram were also monitored. The results showed that the main pharmacokinetic parameters of metoprolol in CYP2D6*1/*34 carriers are similar to those in CYP2D6*1/*1 carriers. However, in individuals carrying the CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 genotypes, the area under the curve (AUC) and half-life (t1/2) of metoprolol increased by 2-3 times compared to wild type. The urinary metabolic ratio of metoprolol in these genotypes is consistent with the trends observed in plasma samples. Therefore, CYP2D6*1/*34 can be considered as normal metabolizers, while CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 are intermediate metabolizers. Although the blood concentration of metoprolol has been found to correlate with CYP2D6 genotype, its blood pressure-lowering effect reaches maximum effectiveness at a reduction of 25 mmHg. Furthermore, P-Q interval prolongation and heart rate reduction are not positively correlated with metoprolol blood exposure. Based on the pharmacokinetic-pharmacodynamic model, this study clarified the properties of metoprolol in subjects with novel CYP2D6 genotypes and provided important fundamental data for the translational medicine of this substrate drug.


Assuntos
Antagonistas Adrenérgicos beta , Metoprolol , Humanos , Metoprolol/farmacocinética , Metoprolol/urina , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Preparações Farmacêuticas , Genótipo , Fenótipo
10.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639180

RESUMO

Knee osteoarthritis (KOA) is a major cause of disability in elderly individuals. Dicoumarol is a coumarin­like compound derived from sweet clover [Melilotus officinalis (L.) Pall]. It has been suggested that dicoumarol exhibits various types of pharmacological activities, including anticoagulant, antitumor and antibacterial effects. Due to its various biological activities, dicoumarol has a potential protective effect against OA. Therefore, the present study aimed to assess the effects of dicoumarol on knee osteoarthritis. In the present study, dicoumarol was found to protect rat synoviocytes from lipopolysaccharide (LPS)­induced cell apoptosis. Western blot analysis showed that dicoumarol significantly reduced the protein expression levels of fibrosis­related markers and inflammatory cytokines (Tgfb, Timp, Col1a, Il1b and Il18). The inhibitory rates of these proteins were all >50% (P<0.01) compared with those in the LPS and ATP­induced group. Consistently, the mRNA expression levels of these markers and cytokines were decreased to normal levels by dicoumarol after the treatment of rat synovial fibroblasts with LPS and ATP. Mechanistic studies demonstrated that dicoumarol did not affect NF­κB signaling, but it did directly interact with NOD­like receptor protein 3 (NLRP3) to promote its protein degradation, which could be reversed by MG132, but not NH4Cl. The protein half­life of NLRP3 was accelerated from 26.1 to 4.3 h by dicoumarol. Subsequently, dicoumarol could alleviate KOA in vivo; knee joint diameter was decreased from 11.03 to 9.93 mm. Furthermore, the inflammation and fibrosis of the knee joints were inhibited in rats. In conclusion, the present findings demonstrated that dicoumarol could impede the progression of KOA by inhibiting NLRP3 activation, providing a potential treatment strategy for KOA.


Assuntos
Osteoartrite do Joelho , Animais , Ratos , Trifosfato de Adenosina , Citocinas , Dicumarol , Fibrose , Inflamassomos/metabolismo , Inflamação , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Osteoartrite do Joelho/metabolismo
11.
Vet Parasitol ; 328: 110153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452532

RESUMO

Avian coccidiosis, caused by Eimeria spp., is one of the major parasitic diseases in chicken. Aquaporins (AQP) are essential mediators of water regulation and nutritional intake in parasites, and it may be a suitable molecule for chemotherapeutic target and vaccine candidate. We identified two aquaporin genes in Eimeria tenella (EtAQP1 and EtAQP2) with their full sequence, and the expression profiles were analyzed across different stages of E. tenella life cycle. The expression of EtAQP1 and EtAQP2 in Xenopus oocytes renders them highly permeable for both water and glycerol. Sugar alcohols up to five carbons and urea pass the pore. The immunohistochemical analysis confirms the restriction of antiserum staining to the surface of transfected Xenopus oocytes. Like other AQP family, EtAQPs are transmembrane proteins that are likely important molecules that facilitate solute uptake for parasite intracellular growth and therapeutic targets.


Assuntos
Aquaporinas , Clonagem Molecular , Eimeria tenella , Eimeria tenella/genética , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Oócitos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Doenças das Aves Domésticas/parasitologia , Galinhas/parasitologia , Sequência de Aminoácidos , Filogenia , Água/química , Regulação da Expressão Gênica
12.
Parasitol Res ; 123(3): 167, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507102

RESUMO

The Eimeria tenella Yulin strain (EtYL), which is sensitive to most anti-coccidial drugs, was isolated in the Yulin area of Guangxi, China. Then, Eimeria tenella Yulin precocious line (pEtYL), a precocious line with a prepatent period of 108 h, was obtained through early selection. The biological characteristics of pEtYL, including its morphology, purity, oocyst excretion curve, reproductive capacity, pathogenicity, immunogenicity, and preservation time, were comprehensively analyzed. The results showed that the isolated precocious line of E. tenella exhibited high purity, relatively weak pathogenicity, and good immunogenicity and can be used as a live vaccine line for chicken coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , China , Coccidiose/prevenção & controle , Oocistos , Virulência , Galinhas
13.
Altern Ther Health Med ; 30(4): 108-112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401087

RESUMO

Background: Nutritional imbalances can significantly impact clinical efficacy and chemotherapy tolerance in cases of acute lymphoblastic leukemia. Despite the potential significance, there is limited research in this domain, and clinicians have paid limited attention to it. Objective: This study aims to investigate the impact of continuous nutritional intervention on pediatric patients with acute lymphoblastic leukemia. Methods: A comparative analysis was conducted by dividing the children into observation and control groups, examining the effects of intermittent diet intervention and continuous nutrition intervention post-nutritional risk assessment. Results: After the intervention, the observation group exhibited a higher proportion of good nutrition and elevated serum albumin levels compared to the control group (χ2=4.79, 5.49, P = .029, 0.019, t =-2.819, -5.559, P = .01, P < .001). Additionally, the complication rate in the observation group was significantly lower than that in the control group (χ2=5.247, P = .022). Conclusions: Continuous nutrition intervention emerges as a valuable strategy for improving the nutritional status and serum albumin levels in children undergoing maintenance treatment for acute lymphoblastic leukemia. Moreover, it contributes to a noteworthy reduction in the incidence of complications.


Assuntos
Estado Nutricional , Leucemia-Linfoma Linfoblástico de Células Precursoras , Albumina Sérica , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/dietoterapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Feminino , Masculino , Criança , Pré-Escolar , Albumina Sérica/análise , Albumina Sérica/metabolismo , Lactente
15.
Vet Parasitol ; 327: 110131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301346

RESUMO

Eimeria tenella infections are known to cause severe caecal damage and death of the infected chicken. Gamogony is an essential stage in E. tenella life cycle and in the establishment of coccidiosis. Prior research had extensively explored isolation and separation of the parasite gametes - microgamete (male) and macrogamete (female). However, there is little information on the efficient, highly purified and distinctly separated male and female gametes. In this study, we generated a genome editing line expressing mCherry fluorescent protein fused with GCS1 protein in E. tenella by using Toxoplasma gondii CRISPR-Cas9 system, flow cytometry and fluorescence microscopy. This allowed precise separation of E. tenella male and female gametes in the transgenic parasite population. The separation of male and female gametes would not only build on our understanding of E. tenella transmission, but it would also facilitate development of gametocidal compounds as drug targets for E. tenella infection.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Proteína Vermelha Fluorescente , Feminino , Masculino , Animais , Eimeria tenella/genética , Sistemas CRISPR-Cas , Coccidiose/genética , Coccidiose/veterinária , Estágios do Ciclo de Vida , Galinhas , Doenças das Aves Domésticas/parasitologia
16.
Drug Metab Dispos ; 52(3): 218-227, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195522

RESUMO

Cytochrome P450 3A4 (CYP3A4), a key enzyme, is pivotal in metabolizing approximately half of the drugs used clinically. The genetic polymorphism of the CYP3A4 gene significantly influences individual variations in drug metabolism, potentially leading to severe adverse drug reactions (ADRs). In this study, we conducted a genetic analysis on CYP3A4 gene in 1163 Chinese Han individuals to identify the genetic variations that might affect their drug metabolism capabilities. For this purpose, a multiplex polymerase chain reaction (PCR) amplicon sequencing technique was developed, enabling us to perform the genotyping of CYP3A4 gene efficiently and economically on a large scale. As a result, a total of 14 CYP3A4 allelic variants were identified, comprising six previously reported alleles and eight new nonsynonymous variants that were nominated as new allelic variants *39-*46 by the PharmVar Association. Further, functional assessments of these novel CYP3A4 variants were undertaken by coexpressing them with cytochromes P450 oxidoreductase (CYPOR) in Saccharomyces cerevisiae microsomes. Immunoblot analysis indicated that with the exception of CYP3A4.40 and CYP3A4.45, the protein expression levels of most new variants were similar to that of the wild-type CYP3A4.1 in yeast cells. To evaluate their catalytic activities, midazolam was used as a probe drug. The results showed that variant CYP3A4.45 had almost no catalytic activity, whereas the other variants exhibited significantly reduced drug metabolism abilities. This suggests that the majority of the CYP3A4 variants identified in the Chinese population possess markedly altered capacities for drug metabolism. SIGNIFICANCE STATEMENT: In this study, we established a multiplex polymerase chain reaction (PCR) amplicon sequencing method and detected the maximum number of new CYP3A4 variants in a single ethnic population. Additionally, we performed the functional characterizations of these eight novel CYP3A4 allele variants in vitro. This study not only contributes to the understanding of CYP3A4 genetic polymorphism in the Chinese Han population but also holds substantial reference value for their potential clinical applications in personalized medicine.


Assuntos
Citocromo P-450 CYP3A , Polimorfismo Genético , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alelos , Polimorfismo Genético/genética , Microssomos/metabolismo , China
17.
Genomics ; 116(2): 110792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215860

RESUMO

Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.


Assuntos
Eimeria tenella , Animais , Eimeria tenella/genética , Proteômica , Galinhas/parasitologia , Oocistos/fisiologia , Esporozoítos/genética , Esporozoítos/metabolismo , Estágios do Ciclo de Vida
18.
J Eukaryot Microbiol ; 71(2): e13009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38073253

RESUMO

Long noncoding RNAs (lncRNAs) are regulatory transcripts during protozoan infections in the host intestinal epithelial cells (IECs). Apicomplexan Eimeria falciformis sporozoite extracellular vesicles (EVs) contain virulence factors that modulate host IECs pro-inflammatory genes and immune responses. In this study, E. falciformis sporozoites were made to interact with inactivated host cells, and the parasite EVs were separated from total secretome by ultracentrifugation and purified on density gradient medium. Dose-dependent bio-activity of E. falciformis EVs was investigated by RNA sequencing, functional annotation and quantitative PCR. It was found that E. falciformis EVs induced mRNA, circRNA, and lncRNA expressions in mouse IECs. Of 38, 217 lncRNAs assembled, 157 and 152 were upwardly and downwardly expressed respectively. Differentially expressed lncRNAs were associated with cytokines, pyroptosis, and immune signaling pathways including FoxO, NF-κB, MAPK, and TGF-ß. In essence, E. falciformis EVs altered host cell RNA expressions during the interaction with host IECs. Also, differentially expressed lncRNAs are potential diagnostic transcripts during Eimeria infections.


Assuntos
Eimeria , RNA Longo não Codificante , Animais , Camundongos , Eimeria/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Esporozoítos , Análise de Sequência de RNA , Sequência de Bases
19.
Pharmacol Res ; 199: 106990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984506

RESUMO

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Assuntos
Glioblastoma , Polifosfatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Caspases , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Nucleotídeos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , DNA , Resistencia a Medicamentos Antineoplásicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA