Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Psychiatry ; 23(1): 69, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698099

RESUMO

BACKGROUND: Genetic risks may predispose individuals to major mood disorders differently. This study investigated the gene polymorphisms of previously reported candidate genes for major depressive disorder (MDD) and bipolar disorder (BPD) in the Han Chinese population. METHODS: Twenty loci of 13 candidate genes were detected by MALDI-TOF mass spectrometry in 439 patients with MDD, 600 patients with BPD, and 464 healthy controls. The distribution of genotypes in alleles, Hardy-Weinberg equilibrium, and genetic association were analyzed using the PLINK software. The linkage of disequilibrium and haplotype analyses were performed using the Haploview software. RESULTS: Out of the 20 loci analyzed, CYP2C19-rs4986893, ABCB1-rs1045642, and SCN2A-rs17183814 passed Bonferroni correction; their statistical powers were > 55%. The minor allele frequencies (MAF) of CYP2C19-rs4986893 in the MDD group (0.0547) and BPD group (0.0533) were higher than that of the control group (0.0259, P < 0.05), leading to the odds ratios (ORs) of MDD (2.178) and BPD (2.122), respectively. In contrast, the lower MAFs of ABCB1-rs1045642 were observed in both MDD (0.3599, OR = 0.726) and BPD (0.3700, OR = 0.758) groups than controls (0.4364, P < 0.05). The MDD group had a higher MAF of SCN2A-rs17183814 than controls (0.1743 vs. 0.1207, OR = 1.538, P < 0.05). Moreover, a G-A haplotype composed by CYP2C19-rs4986893 and -rs4244285 was associated with BPD (OR = 1.361, P < 0.01), and the A-G haplotype increased the risks to both MDD (OR = 2.306, P < 0.01) and BPD (OR = 2.332, P < 0.001). The CYP2C19 intermediate metabolizer and poor metabolizer (IM&PM) status was related to the raised risk of both MDD (OR = 1.547, P < 0.01) and BPD (OR = 1.808, P < 0.001). CONCLUSION: Our data indicate that the impaired CYP2C19 metabolism caused by the haplotypes integrated by CYP2C19 alleles might confer the risk to MDD and BPD, whereas the ABCB1-rs1045642 T allele serves as a protective factor.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/genética , Transtorno Bipolar/genética , Citocromo P-450 CYP2C19/genética , Fatores de Proteção , População do Leste Asiático , Genótipo , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
2.
Front Microbiol ; 13: 961942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246276

RESUMO

Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD), which is an infectious disease that endangers children's health. However, the pathogenic mechanisms underlying these severe clinical and pathological features remain incompletely understood. Metabolism and stress are known to play critical roles in multiple stages of the replication of viruses. Lipid metabolism and ER stress is an important characterization post viral infection. EV-A71 infection alters the perturbations of intracellular lipid homeostasis and induces ER stress. The characterizations induced by viral infections are essential for optimal virus replication and may be potential antiviral targets. In this study, we found that the addition of the chemical drug of ER stress, PKR IN, an inhibitor, or Tunicamycin, an activator, could significantly reduce viral replication with the decrease of lipid. The replication of viruses was reduced by Chemical reagent TOFA, an inhibitor of acetyl-CoA carboxylase (ACC) or C75, an inhibitor of fatty acid synthase (FASN), while enhanced by oleic acid (OA), which is a kind of exogenous supplement of triacylglycerol. The pharmacochemical reagent of carnitine palmitoyltransferase 1 (CPT1) called Etomoxir could knock down CPT1 to induce EV-A71 replication to decrease. This suggests that lipid, rather than ER stress, is the main factor affecting EV-A71 replication. In conclusion, this study revealed that it is the ß-oxidation of lipid that plays a core role, not ER stress, which is only a concomitant change without restrictive effect, on virus replication.

3.
Front Cell Infect Microbiol ; 12: 899546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677655

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has currently infected over 430 million individuals worldwide. With the variant strains of SARS-CoV-2 emerging, a region of high mutation rates in ORF8 was identified during the early pandemic, which resulted in a mutation from leucine (L) to serine (S) at amino acid 84. A typical feature of ORF8 is the immune evasion by suppressing interferon response; however, the mechanisms by which the two variants of ORF8 antagonize the type I interferon (IFN-I) pathway have not yet been clearly investigated. Here, we reported that SARS-CoV-2 ORF8L and ORF8S with no difference inhibit the production of IFN-ß, MDA5, RIG-I, ISG15, ISG56, IRF3, and other IFN-related genes induced by poly(I:C). In addition, both ORF8L and ORF8S proteins were found to suppress the nuclear translocation of IRF3. Mechanistically, the SARS-CoV-2 ORF8 protein interacts with HSP90B1, which was later investigated to induce the production of IFN-ß and IRF3. Taken together, these results indicate that SARS-CoV-2 ORF8 antagonizes the RIG-I/MDA-5 signaling pathway by targeting HSP90B1, which subsequently exhibits an inhibitory effect on the production of IFN-I. These functions appeared not to be influenced by the genotypes of ORF8L and ORF8S. Our study provides an explanation for the antiviral immune suppression of SARS-CoV-2 and suggests implications for the pathogenic mechanism and treatment of COVID-19.


Assuntos
COVID-19 , Interferon Tipo I , Glicoproteínas de Membrana , Proteínas Virais , COVID-19/virologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Interferon beta/genética , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2 , Transdução de Sinais , Proteínas Virais/metabolismo
4.
Virol J ; 18(1): 151, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281586

RESUMO

BACKGROUND: Zika virus is becoming one of the most widely transmitted arboviruses in the world. Development of antiviral inhibitor and vaccine requires an experimental system that allows rapid monitoring of the virus infection. This is achievable with a reverse genetic system. In this study, we constructed an infectious clone for Zika virus that stably expressing EGFP. METHODS: A PCR-mediated recombination approach was used to assemble the full-length Zika virus genome containing the CMV promoter, intron, EGFP, hepatitis delta virus ribozyme, and SV40 terminator sequence for cloning into the pBAC11 vector to produce recombinant pBAC-ZIKA-EGFP. ZIKA-EGFP virus was rescued by transfection of pBAC-ZIKA-EGFP into 293T cells. The characterization of ZIKA-EGFP virus was determined by qPCR, plaque assay, CCK-8, and Western blot. RESULTS: Rescued ZIKA-EGFP virus exhibited stable replication for at least five generations in tissue culture. ZIKA-EGFP can effectively infect C6/36, SH-SY5Y and Vero cells, and cause cytopathic effects on SH-SY5Y and Vero cells. The inhibition of ZIKA-EGFP by NF-κB inhibitor, caffeic acid phenethyl ester was observed by fluorescence microscopy. CONCLUSION: Our results suggested that Zika virus infectious clone with an EGFP marker retained it infectivity as wide-type Zika virus which could be used for drugs screening.


Assuntos
Efeito Citopatogênico Viral , Zika virus , Animais , Chlorocebus aethiops , Genes Reporter , Proteínas de Fluorescência Verde/genética , Células Vero , Zika virus/genética
5.
Virol Sin ; 36(3): 510-520, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33185862

RESUMO

Owing to the widespread distribution of mosquitoes capable of transmitting Zika virus, lack of clinical vaccines and treatments, and poor immunity of populations to new infectious diseases, Zika virus has become a global public health concern. Recent studies have found that Zika virus can continuously infect human brain microvascular endothelial cells. These cells are the primary components of the blood-brain barrier of the cerebral cortex, and further infection of brain tissue may cause severe damage such as encephalitis and fetal pituitary disease. The present study found that a biologically active base, piperlongumine (PL), inhibited Zika virus replication in human brain microvascular endothelial cells, Vero cells, and human umbilical vein endothelial cells. PL also significantly increased heme oxygenase-1 (HO-1) gene expression, while silencing HO-1 expression and using the reactive oxygen species scavenger, N-acetylcysteine, attenuated the inhibitory effect of PL on Zika virus replication. These results suggest that PL induces oxidative stress in cells by increasing reactive oxygen species. This, in turn, induces an increase in HO-1 expression, thereby inhibiting Zika virus replication. These findings provide novel clues for drug research on the prevention and treatment of Zika virus.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Dioxolanos , Células Endoteliais , Humanos , Estresse Oxidativo , Regulação para Cima , Células Vero , Replicação Viral , Infecção por Zika virus/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA