Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 447: 139016, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513494

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are extensively found in foods, posing potential toxicity to humans. Therefore, rapid analysis and monitoring of PFASs in foods are crucial for public health and also a challenge. To detect trace PFASs in foods, construction of sorbents with multiple interactions could be an effective approach. Herein, a cationic-fluorinated covalent organic framework (CF-COF) was prepared by post-modification and used as a magnetic solid-phase extraction adsorbent for adsorption of PFASs. By combining magnetic solid-phase extraction based on CF-COF with liquid chromatography-tandem mass spectrometry (LC - MS/MS), a novel method was developed for determination of eight long-chain PFASs in foods. Under optimized conditions, the method exhibited low detection limits (0.003-0.019 ng/g) and satisfactory recovery rates (73.5-118%) for PFASs. This study introduces a novel idea for the development of adsorbents targeting PFASs, along with a new analytical method for monitoring of PFASs in foods.


Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Humanos , Espectrometria de Massas em Tandem/métodos , Estruturas Metalorgânicas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Extração em Fase Sólida/métodos , Fluorocarbonos/análise , Limite de Detecção
2.
Angew Chem Int Ed Engl ; 63(19): e202400340, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497899

RESUMO

In order to realize portable pathogen diagnostics with easier quantitation, digitization and integration, we develop a ready-to-use electrochemical sensing strategy (Iso-E-Codelock) for real-time detection of isothermal nucleic acid amplification. Bridged by a branched DNA as codelock, the isothermal amplicon is transduced into increased current of an electrochemical probe, holding multiple advantages of high sensitivity, high selectivity, signal-on response, "zero" background and one-pot operation. Through a self-designed portable instrument (BioAlex PHE-T), the detection can be implemented on a multichannel microchip and output real-time amplification curves just like an expensive commercial PCR machine. The microchip is a rebuilding-free and disposable component. The branch codelock probe can be customized for different targets and designs. Such high performance and flexibility have been demonstrated utilizing four virus (SARS-CoV-2, African swine fever, FluA and FluB) genes as targets, and two branch (3-way and 4-way) DNAs as codelock probes.


Assuntos
Técnicas Eletroquímicas , Técnicas de Amplificação de Ácido Nucleico , Técnicas Eletroquímicas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Animais , Dispositivos Lab-On-A-Chip
3.
Front Microbiol ; 15: 1302998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292253

RESUMO

Lactobacillus acidophilus (LA) is a common clinical probiotic that improves ulcerative colitis (UC) by restoring intestinal immune balance. However, the interaction of LA with the gut microbiota and its metabolites in the treatment of UC remains unknown. Therefore, this study seeks to elucidate whether the gut microbiota and its metabolites act as pivotal effectors in LA's therapeutic mechanisms and how precisely they modulate intestinal immunity. In this study, we verified that LA can obviously ameliorate the disease severity, and regulate intestinal immune disorders in UC mice. Subsequently, antibiotic (ABX)-mediated depletion of the gut microflora demonstrated that the therapeutic efficiency of LA was closely associated with gut microbiota. In addition, the results of metabolomics revealed that ursodeoxycholic acid (UDCA), a metabolite of intestinal flora, may be a potential effector molecule mediating therapeutic effects of LA. Indeed, we found that UDCA can improve the macro pathological characteristics of UC mice, and through a comprehensive set of in vivo and in vitro experiments, we discovered that UDCA exerts dual effects on immune regulation. Firstly, it promotes the differentiation of Treg cells, resulting in increased secretion of anti-inflammatory cytokines. Secondly, UDCA inhibits the polarization of M1 macrophages, effectively reducing the secretion of pro-inflammatory cytokines. Moreover, we found that UDCA regulation of immune response is directly related to the RapGap/PI3K-AKT/NF-κB signaling pathway. In conclusion, LA and its metabolite, UDCA, may treat UC by activating the RapGap/PI3K-AKT/NF-κB signaling pathway and modulating Treg cells and M1 macrophages. All in all, our findings highlight the potential of microbial metabolites in enhancing probiotic for UC treatment.

4.
Drug Des Devel Ther ; 17: 1371-1386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181826

RESUMO

Purpose: This study aimed to investigate the underlying treatment mechanism of Radix Astragali (RA) in hyperuricemia from the perspective of microbiota and metabolomics. Methods: We used potassium oxyazinate (PO) to induce hyperuricemia mice, and we determined serum alanine aminotransferase/aspartate aminotransferase (ALT/AST), xanthine oxidase (XOD), creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN) levels, liver XOD levels and assessed the kidney tissue histopathology. The therapeutic mechanism of RA in hyperuricemic mice was studied by 16S rRNA, metagenomic sequencing and metabolomics. Results: Our research showed that RA has therapeutic effect in hyperuricemia mice, such as slow the weight loss, repair kidney damage, and downregulate serum UA, XOD, CRE, ALT/AST, BUN, and liver XOD levels. RA restored the disturbance structure of the microbiota in hyperuricemia mice by increasing the relative abundances of beneficial bacteria (Lactobacillaceae and Lactobacillus murine) but decreasing the relative abundances of pathogenic bacteria (Prevotellaceae, Rikenellaceae and Bacteroidaceae). Meanwhile, we found that RA directly regulated the metabolic pathway (such as linoleic acid metabolism and glycerophospholipid metabolism) and indirectly regulated bile acid metabolism by mediating microbiota to ameliorate metabolic disorders. Subsequently, there was a robust correlation between specific microbiota, metabolites and the disease index. Conclusion: The ability of RA to protect mice against hyperuricemia is strongly linked to the microbiome-metabolite axis, which would provide evidence for RA as a medicine to prevent or treat hyperuricemia.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , RNA Ribossômico 16S , Metagenômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
5.
Arch Microbiol ; 205(5): 179, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029820

RESUMO

Pogostemon cablin (Blanco) Benth (PCB), a medicinal and edible homologous Chinese herb, has a protective effect on the structure and function of intestine. In this study, we aimed to investigate the effect of PCB granule (PCBG) on the improvement of irinotecan-induced intestinal mucositis and the regulation of intestinal microorganisms in mice. Our results demonstrated that PCBG supplementation significantly improved diarrhea symptoms caused by irinotecan, as evidenced by inhibiting weight loss, reversing intestinal atrophy, protecting against splenomegaly and balancing oxidative stress. Furthermore, compared with the model group, PCBG restored the intestinal morphology and improved intestinal barrier dysfunction by promoting the expression of tight junction proteins and mucin. Moreover, high-throughput sequencing analysis revealed that PCBG improved the flora disorder caused by irinotecan and regulated microbial community structure, such as decreasing the relative abundance of Bacteroides as well as increasing the relative abundance of Lactobacillus. Meanwhile, the disordered microbial functions in intestinal mucositis mice were recovered more closely to the controls by PCBG. Finally, we found that a robust correlation between the specific microbiota and intestinal mucositis-related index. In summary, these findings revealed the beneficial effects of PCBG on the intestinal barrier and gut microbiota of irinotecan-induced intestinal mucositis, which may be one of the potential strategies to reduce the clinical side effects of irinotecan.


Assuntos
Microbioma Gastrointestinal , Mucosite , Pogostemon , Camundongos , Animais , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Irinotecano/efeitos adversos , Irinotecano/metabolismo , Mucosa Intestinal , Intestinos
6.
Chem Biol Interact ; 376: 110449, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921834

RESUMO

Clerodendranthus spicatus (Thunb.) C. Y. Wu, also known as kidney tea (KT), has been widely employed in kidney protection in Chinese Medicine. It has been reported that KT can lower uric acid (UA) and mitigate gout, while the mechanism remains to be elucidated. Given the close relationship between hyperuricemia (HUA), intestinal flora and host metabolism, this study aimed to explore the mechanism by which KT lowers UA from the perspective of the fecal microbiome and metabolome. Initially, mice were intraperitoneally injected with potassium oxonate to induce the HUA model. The results showed that KT markedly reduced the serum level of UA and impaired renal damage in HUA mice. Subsequently, the result of 16S rRNA gene sequencing analysis indicated that KT administration appeared a significant improvement in the structure of the intestinal flora, especially increased the abundances of Roseburia and Enterorhabdus, while decreased the abundances of Ileibacterium and UBA1819. Moreover, the levels of differential metabolites (including twenty-five in feces and eight in serum) identified by untargeted metabolomics returned to normal after KT intervention. Taken together, the mechanism of KT in alleviating HUA is related to the regulation of the intestinal flora and the remodeling of metabolic disorders, which will lay a theoretical foundation for KT as a UA-lowering drug.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Metaboloma , Rim/metabolismo , Chá
7.
Cancer Control ; 29: 10732748221143388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36461936

RESUMO

BACKGROUND: Because of multiple competing death outcomes and time-varying coefficients, using a Cox regression model to analyze the prognostic factors of low-grade gliomas (LGG) may lead to a possible bias. Therefore, we adopted time-dependent competing risk models to obtain accurate prognostic factors for LGG. METHODS: In this retrospective cohort study, data were extracted from patients enrolled in the Surveillance, Epidemiology, and End Results (SEER) database between 2000 and 2018. Univariate analysis was performed using the cumulative incidence function (CIF) and Kaplan-Meier (KM) function. Time-dependent competing risk and Cox regression models were used in the multivariable analysis. RESULTS: A total of 2581 patients were diagnosed with low-grade glioma, among whom 889 died from low-grade glioma, 114 died from other causes, and the rest were alive. The time-dependent competing risk models indicated that age, sex, marital status, primary tumor site, histological type, tumor diameter, surgery, and year of diagnosis were significantly associated with low-grade glioma-specific death, and the relative effect of age, tumor diameter, surgery, oligodendroglioma, and mixed glioma on low-grade glioma-specific death changed over time. Compared with the competing risk models, the Cox regression model misestimated the hazard ratio (HR) of covariates on the outcome and even produced false-negative results. CONCLUSIONS: The time-dependent competing risk models were better than the Cox regression model for evaluating the impact of covariates on low-grade glioma-specific mortality in the presence of competing risks and time-varying coefficients. The models identified the prognostic factors of LGG more accurately than the Cox regression model.


Assuntos
Glioma , Projetos de Pesquisa , Humanos , Adulto , Prognóstico , Estudos Retrospectivos , Bases de Dados Factuais , Glioma/epidemiologia
8.
Food Funct ; 13(5): 2985-2997, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195119

RESUMO

As a disease caused by an impaired intestinal epithelial barrier, imbalanced flora, immune imbalance and genetic susceptibility, ulcerative colitis (UC) is becoming a health threat for all ages. Lactobacillus acidophilus (L. acidophilus), an attracting probiotic, has already been confirmed to improve immune dysfunction, stabilize intestinal microflora, and combat gut disorders. However, no studies have focused on the effects of different forms of L. acidophilus on UC, and its mechanism involved in the mitophagy/NLRP3 inflammasome pathway has not been reported. In this study, we found that compared with the heat-killed L. acidophilus and the culture supernatant of L. acidophilus, the live L. acidophilus (La) has the optimal therapeutic effect on UC rats. Furthermore, La evidently increased the contents of SCFAs, inhibited NLRP3 inflammasome and facilitated autophagy. SCFAs regulated by La balanced inflammation homeostasis and improved intestinal barrier dysfunctions in vitro and in vivo, which was achieved by activating the mitophagy/NLRP3 inflammasome pathway. Moreover, PCR analysis indicated that the aforementioned effects of SCFAs regulated by La may be due to the activation of G protein-coupled receptors. These findings provided guidance for the application of L. acidophilus in daily life and provided a new molecular target for interactions among L. acidophilus, its metabolites and host immunity.


Assuntos
Lactobacillus acidophilus , Probióticos/farmacologia , Animais , Colite Ulcerativa/prevenção & controle , Modelos Animais de Doenças , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Probióticos/administração & dosagem , Probióticos/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA