Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 15(13): 4430-4447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947385

RESUMO

As a chemotherapy agent, cisplatin (DDP) is often associated with drug resistance and gastrointestinal toxicity, factors that severely limit therapeutic efficacy in patients with ovarian cancer (OC). Naringin has been shown to increase sensitivity to cisplatin, but whether the intestinal microbiota is associated with this effect has not been reported so far. In this study, we applied a humanized mouse model for the first time to evaluate the reversal of cisplatin resistance by naringin, as well as naringin combined with the microbiota in ovarian cancer. The results showed that naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 had an inhibitory effect on the tumor, significantly reducing tumor size (p<0.05), as well as the concentrations of serum tumor markers CA125 and HE4, increased the relative abundance of Bifidobacterium and Bacteroides, inhibit Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)-induced intestinal inflammation and increase the expression of intestinal permeability-associated proteins ZO-1 (p<0.001) and occludin (p<0.01). In conclusion, the above data demonstrate how naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 reverses cisplatin resistance in ovarian cancer by modulating the intestinal microbiota, inhibiting the TLR4/NF-κB signaling pathway and modulating the p38MAPK signaling pathway.

2.
Int J Biol Macromol ; 273(Pt 1): 132958, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852731

RESUMO

Wood has gained popularity as a building and decorative material due to its environmentally friendly and sustainable characteristics. Yet, its long maturation time poses a limitation on meeting the growing demand for wood products. This challenge has led to the plantation of fast-growing wood as an alternative solution. Unfortunately, the poor mechanical properties of fast-growing wood hinder its application. In this study, we developed novel densification-modified wood by combining alkali chemical pretreatment, cyclic impregnation, and mechanical hot-pressing techniques. Additionally, the response surface method was employed to rapidly determine the optimal preparation parameters, reducing the cost of preparation under various conditions. The optimized parameters resulted in densification-modified wood with a flexural strength and modulus of elasticity of 337.04 MPa and 27.43 GPa, respectively. Furthermore, the densified wood achieved excellent dimensional stability by reducing the water-absorbing thickness swelling to 1.15 % for 72-h water soaking. The findings indicated that the densification-modified wood possessed high tensile strength and elastic modulus, along with excellent dimensional stability. The proposed densified wood modification technology in this study offers new perspectives and design guidance for the application of outdoor engineering structures, energy-efficient buildings, and decorative materials.

3.
Quant Imaging Med Surg ; 14(4): 3060-3074, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617161

RESUMO

Background: A high rate of glomerulosclerosis serves as an important signal of poor response to treatment and a high risk of disease progression or adverse prognosis in transplanted kidneys. We hypothesized that contrast-enhanced ultrasound (CEUS) could serve as a novel imaging biomarker in the early prediction of glomerulosclerosis rate by evaluating renal allograft microcirculation. Methods: A retrospective analysis was performed on 143 transplanted kidney recipients with confirmed pathology, including 100 in the training group and 43 in the validation group. All patients underwent conventional ultrasound (CUS) and CEUS examinations. The patients were divided into two groups: those with >50% glomerulosclerosis and those with ≤50% glomerulosclerosis. The nomograms derived from independent predictors identified by multivariate logistic analysis were assessed using receiver operating characteristic (ROC) curve analysis, 1,000 bootstrap resamples, calibration curves, and decision curve analysis (DCA). Results: The patients with >50% glomerulosclerosis and those with ≤50% glomerulosclerosis showed statistically significant differences in CEUS parameters, including in peak intensity (PI) (25 vs. 30; P<0.001), absolute time to peak (ATTP) (10 vs. 9; P=0.004), and time to peak (TTP) (22 vs. 19.5; P=0.026). Multivariate analysis revealed that PI [odds ratio (OR) =0.852; 95% confidence interval (CI): 0.737-0.986], peak systolic velocity (PSV) of the interlobar artery (OR =0.850; 95% CI: 0.758-0.954), cortical echogenicity (OR =38.429; 95% CI: 3.695-399.641), and time since transplantation (OR =1.017; 95% CI: 1.006-1.028) were independent predictors of whether the glomerulosclerosis rate was >50% and were incorporated into the construction of a nomogram. The area under the curve (AUC) of the nomogram in the training and validation groups was 0.914 (95% CI: 0.840-0.960) and 0.909 (95% CI: 0.781-0.975), respectively, with a bootstrap resampling AUC of 0.877. The calibration curve and DCA confirmed the diagnostic performance of the nomogram model. Conclusions: The nomogram, which combined CUS, CEUS, and clinical indicators, exhibited notable predictive efficacy for the glomerulosclerosis rate in transplanted kidneys, thereby demonstrating the potential to improve clinical decision-making.

4.
Arch Virol ; 169(3): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381240

RESUMO

A novel mitovirus, tentatively designated as "Fusarium oxysporum mitovirus 2" (FoMV2), was isolated from the pathogenic Fusarium oxysporum f. sp. ginseng strain 0414 infecting Panax ginseng. The complete genome of FoMV2 is 2388 nt in length with a GC content of 30.57%. It contains a large open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 713 amino acids with a molecular weight of 83.05 kDa. The sequence identity between FoMV2 and Botrytis cinerea mitovirus 8 and Fusarium verticillioides mitovirus 1 was 87.94% and 77.85%, respectively. Phylogenetic analysis showed that FoMV2 belongs to the genus Unuamitovirus in the family Mitoviridae. To the best of our knowledge, this is the first report of an unuamitovirus isolated from F. oxysporum f. sp. ginseng causing ginseng root rot.


Assuntos
Aminoácidos , Fusarium , Panax , Filogenia , Peso Molecular
5.
Adv Sci (Weinh) ; 11(17): e2400074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381058

RESUMO

Given the escalating prevalence of electromagnetic pollution, there is an urgent need for the development of high-performance electromagnetic interference (EMI) shielding materials. Herein, wood-based electromagnetic shielding materials have gained significant popularity due to their exceptional performance as building materials. In this study, a novel wood-based composite with electromagnetic shielding properties is developed. Through the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) crystals on wood fibers, coupled with uniform integration of carbon nanotubes (CNTs), a multifunctional composite named ZIF-8/Poplar-CNT composite is synthesized via a one-step thermoforming process. The incorporation of CNTs endows the composites with excellent EMI shielding effectiveness (EMI SE). Among these elements, despite ZIF-8 crystals not possessing intrinsic electromagnetic shielding functionality, their distinctive dodecahedral structure proves adept at scattering and reflecting electromagnetic waves within the composites, further improving the electromagnetic shielding effect. Hence, the ZIF-8/Poplar-CNT composite (56.95 dB) has ≈10 dB higher EMI SE compared to that of the composites without ZIF-8 crystals. Meanwhile, ZIF-8 crystals endow the materials with excellent tensile strength (54.84 MPa, enhanced by 4 times). Moreover, the introduction of Zn2+ provides superior antibacterial properties. The potential applications of ZIF-8/Poplar-CNT composites extend to diverse areas such as building decoration, electronic products, and medical equipment.

6.
Sci Rep ; 14(1): 265, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167851

RESUMO

Earth pressure shields are widely used in tunnel construction due to their low environmental impact and mechanized operations. However, ensuring the stability of the excavation surface during the construction process is crucial. Any instability in the excavation surface can lead to soil destruction, such as body collapse or surface uplift. Additionally, the tunneling process can cause deformation disturbances to nearby buildings. In the case of Beijing Metro Line 17, detailed survey data and construction monitoring data were collected through field surveys and tests. The study combined theoretical analysis and numerical simulations to investigate the impact of shield tunneling in clay layers on neighboring buildings. The focus was on analyzing the physical deformation and the response law of influencing factors, such as stratum parameters and engineering effects on surface settlement, building inclination, and distortion. Furthermore, sensitivity analysis of the deformation impact was conducted, and corresponding measures for deformation control were proposed.

7.
Int J Biol Macromol ; 257(Pt 1): 128572, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052291

RESUMO

Wood is one of the most popular materials for construction purposes because of its environmentally friendly and sustainable characteristics. However, the use of wood is constrained by the lengthy time it takes for trees to mature. Consequently, fast-growing wood species have become popular as substitute options due to their ability to rapidly reach maturity and high yields. Although the problem of low density and strength has been effectively addressed in recent years by densifying wood, the problem of large thickness swelling due to moisture and water absorption has limited its application. Therefore, we reported an effective modification strategy to overcome the thickness swelling issue of densified wood by preparing a cellulosic reinforced material through the synergistic action of alkaline chemical pretreatment, multi-step cyclic impregnation and high-temperature densification. The results showed that the alkaline chemical pretreatment was effective for removing a large amount of lignin and hemicelluloses, creating a large number of hydrogen bonds among the remaining strong celluloses. The impregnated sodium silicate solution bonded celluloses tightly, and the densification treatment contributed to the production of Si-O-Si structure, forming the shuttle hybridized structure through Si-O-C bonds. The hardness, flexural strength, elastic modulus, and compressive strength of the modified wood increased by 3.9, 6.0, 3.4 and 28.2 times, respectively. In addition, 0 % thickness swelling for 30-day moisture absorption and 1.0 % thickness swelling for 72-hour water absorption were achieved, realizing super dimensional-stable poplar structures. Furthermore, the high-performance densified wood prepared by this method has excellent fire and mildew resistance properties, which lays the foundation for the application of fast-growing wood in outdoor engineering structures.


Assuntos
Celulose , Populus , Celulose/química , Madeira/química , Lignina/química , Força Compressiva , Populus/química , Água/análise
8.
Injury ; 55(2): 111203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043143

RESUMO

Osteoporosis results from an imbalance in a highly balanced physiological process called bone remodeling, in which osteoclast-mediated bone resorption and osteoblast-mediated bone formation play important roles. Osteoimmunology is a newly discovered interdisciplinary research field that focuses on the relationship between bone and the immune system. Specifically, bone and the immune system interact through cytokines, immune cells secrete cytokines, and cytokines finely regulate bone metabolism by mediating the differentiation and activity of osteoclasts and osteoblasts. Therefore, understanding the influence of cytokines on bone metabolism is conducive for the development of novel targeted drugs against immune-related bone diseases. This review summarizes the pathophysiological functions of various common cytokines in bone and discusses the potential clinical value of multiple cytokines in immune-mediated bone diseases.


Assuntos
Reabsorção Óssea , Citocinas , Humanos , Citocinas/metabolismo , Osso e Ossos , Osteoclastos , Osteoblastos/metabolismo , Sistema Imunitário/metabolismo , Remodelação Óssea
9.
Zool Res ; 45(1): 55-68, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114433

RESUMO

The gastrointestinal tract is essential for food digestion, nutrient absorption, waste elimination, and microbial defense. Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity, functional heterogeneity, and their importance in intestinal tract development and disease. Although such profiling has been extensively conducted in humans and mice, the single-cell gene expression landscape of the pig cecum remains unexplored. Here, single-cell RNA sequencing was performed on 45 572 cells obtained from seven cecal samples in pigs at four different developmental stages (days (D) 30, 42, 150, and 730). Analysis revealed 12 major cell types and 38 subtypes, as well as their distinctive genes, transcription factors, and regulons, many of which were conserved in humans. An increase in the relative proportions of CD8 + T and Granzyme A (low expression) natural killer T cells (GZMA low NKT) cells and a decrease in the relative proportions of epithelial stem cells, Tregs, RHEX + T cells, and plasmacytoid dendritic cells (pDCs) were noted across the developmental stages. Moreover, the post-weaning period exhibited an up-regulation in mitochondrial genes, COX2 and ND2, as well as genes involved in immune activation in multiple cell types. Cell-cell crosstalk analysis indicated that IBP6 + fibroblasts were the main signal senders at D30, whereas IBP6 - fibroblasts assumed this role at the other stages. NKT cells established interactions with epithelial cells and IBP6 + fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs. This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages.


Assuntos
Ceco , Intestinos , Humanos , Camundongos , Animais , Suínos , Ceco/metabolismo , Trato Gastrointestinal , Perfilação da Expressão Gênica/veterinária , Células Epiteliais
10.
Eco Environ Health ; 2(2): 41-42, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38075294

RESUMO

•Microplastic pollution threats environmental and human health.•The resolution of End Plastic Pollution promotes the global strategy against plastic pollution.•The governments should launch relevant policies to implement this resolution.

11.
3D Print Addit Manuf ; 10(6): 1405-1413, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116224

RESUMO

This study was aimed at investigating the photofatigue resistance and mechanical properties of photochromic wood-plastic composites using a stabilizer complex-AH (antioxidant 1010 and hindered amine light stabilizer HALS 770)-with different contents of thermoplastic polyurethane (TPU), which was prepared by the melt-blending extrusion process and three-dimensional (3D) printing. Photofatigue resistance, mechanical property, microtopography, and thermal analyses of 3D printed samples were performed. The results showed that the difference in surface color of composites improved by 26.7% with addition of AH after 10 days of accelerated aging, whereas the mechanical strength decreased. Upon adding TPU, composites' impact strength significantly increased by 25.48% and 87.87% with 10% and 20% addition, respectively. Meanwhile, the interface compatibilities between the components were enhanced. The differential scanning calorimetry and thermogravimetric analysis results indicated that 10% TPU could improve the thermal stability of composites.

12.
Sci Bull (Beijing) ; 68(21): 2583-2597, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783617

RESUMO

The postnatal development of the liver, an essential organ for metabolism and immunity, remains poorly characterized at the single-cell resolution. Here, we generated single-nucleus and single-cell transcriptomes of 84,824 pig liver cells at four postnatal time points: day 30, 42, 150, and 730. We uncovered 23 cell types, including three rare cell types: plasmacytoid dendritic cells, CAVIN3+IGF2+ endothelial cells, and EBF1+ fibroblasts. The latter two were verified by multiplex immunohistochemistry. Trajectory and gene regulatory analyses revealed 33 genes that encode transcription factors associated with hepatocyte development and function, including NFIL3 involved in regulating hepatic metabolism. We characterized the spatiotemporal heterogeneity of liver endothelial cells, identified and validated leucine zipper protein 2 (LUZP2) as a novel adult liver sinusoidal endothelial cell-specific transcription factor. Lymphoid cells (NK and T cells) governed the immune system of the pig liver since day 30. Furthermore, we identified a cluster of tissue-resident NK cells, which displayed virus defense functions, maintained proliferative features at day 730, and manifested a higher conservative transcription factor expression pattern in humans than in mouse liver. Our study presents the most comprehensive postnatal liver development single-cell atlas and demonstrates the metabolic and immune changes across the four age stages.


Assuntos
Células Endoteliais , Fígado , Camundongos , Humanos , Animais , Suínos , Células Endoteliais/metabolismo , Fígado/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Regulação da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo
13.
Int J Biol Macromol ; 253(Pt 5): 127264, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804892

RESUMO

In this study, we report the development of a sustainable polymer system with 50 wt% lignin content, suitable for additive manufacturing and high value-added utilization of lignin. The plasticized polylactic acid (PLA) was incorporated with lignin to develop the bendable and malleable green composites with excellent 3D printing adaptability. The biocomposites exhibit increases of 765.54 % and 125.27 % in both elongation and toughness, respectively. The plasticizer enhances the dispersion of lignin and the molecular mobility of the PLA chains. The good dispersion of lignin particles within the structure and the reduction of chemical cross-linking promote the local relaxation of the polymer chains. The good local relaxation of the polymer chains and the high flexibility allow to obtain a better integration between the printed layers with good printability. This research demonstrates the promising potential of this composite system for sustainable manufacturing and provides insights into novel material design for high-value applications of lignin.


Assuntos
Lignina , Poliésteres , Polímeros , Plastificantes
14.
Adv Sci (Weinh) ; 10(30): e2303414, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668266

RESUMO

Sb2 S3 is rapidly developed as light absorber material for solar cells due to its excellent photoelectric properties. However, the use of the organic hole transport layer of Spiro-OMeTAD and gold (Au) in Sb2 S3 solar cells imposes serious problems in stability and cost. In this work, low-cost molybdenum (Mo) prepared by magnetron sputtering is demonstrated to serve as a back electrode in superstrate structured Sb2 S3 solar cells for the first time. And a multifunctional layer of Se is inserted between Sb2 S3 /Mo interface by evaporation, which plays vital roles as: i) soft loading of high-energy Mo particles with the help of cottonlike-Se layer; ii) formation of surficial Sb2 Se3 on Sb2 S3 layer, and then reducing hole transportation barrier. To further alleviate the roll-over effect, a pre-selenide Mo target and consequentially form a MoSe2 is skillfully sputtered, which is expected to manipulate the band alignment and render an enhanced holes extraction. Impressively, the device with an optimized Mo electrode achieves an efficiency of 5.1%, which is one of the highest values among non-noble metal electrode based Sb2 S3 solar cells. This work sheds light on the potential development of low-cost metal electrodes for superstrate Sb2 S3 devices by carefully designing the back contact interface.

15.
Heliyon ; 9(8): e18776, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560633

RESUMO

Recently GeSe has developed as a promising light harvesting material by enjoying to its optical and electrical features as well as earth-abundant and low-toxic constituent elements. Nevertheless, the power conversion efficiency of GeSe-based solar cells yet lags far behind the Shockley-Queisser limit. In this work, we systematically designed, simulated and analyzed the highly efficient GeSe thin-film solar cells by SCAPS-1D. The influence of thickness and defect density of light harvest material, GeSe/CdS interface defect density, electron transport layer (ETL), electrode work function and hole transport layer (HTL) on the device output are carefully analyzed. By optimizing the parameters (thickness, defect, concentration, work function, ETL and HTL), an impressive PCE of 17.98% is delivered along with Jsc of 37.11 mA/cm2, FF of 75.53%, Voc of 0.61 V. This work offers theoretical guidance for the design of highly efficient GeSe thin film solar cells.

16.
Sci China Life Sci ; 66(11): 2614-2628, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37428306

RESUMO

The hippocampus is a brain region associated with memory, learning and spatial navigation, its aging-related dysfunction is a common sign of Alzheimer's disease. Pig is a good model for human neurodegenerative disease, but our understanding of the regulatory program of the pig hippocampus and its cross-species conservation in humans remains limited. Here, we profiled chromatin accessibility in 33,409 high-quality nuclei and gene expression in 8,122 high-quality nuclei of the pig hippocampus at four postnatal stages. We identified 510,908 accessible chromatin regions (ACRs) in 12 major cell types, among which progenitor cells such as neuroblasts and oligodendrocyte progenitor cells showed a dynamic decrease from early to later developmental stages. We revealed significant enrichment of transposable elements in cell type-specific ACRs, particularly in neuroblasts. We identified oligodendrocytes as the most prominent cell type with the greatest number of genes that showed significant changes during the development. We identified ACRs and key transcription factors underlying the trajectory of neurogenesis (such as POU3F3 and EGR1) and oligodendrocyte differentiation (RXRA and FOXO6). We examined 27 Alzheimer's disease-related genes in our data and found that 15 showed cell type-specific activity (TREM2, RIN3 and CLU), and 15 genes displayed age-associated dynamic activity (BIN1, RABEP1 and APOE). We intersected our data with human genome-wide association study results to detect neurological disease-associated cell types. The present study provides a single nucleus-accessible chromatin landscape of the pig hippocampus at different developmental stages and is helpful for the exploration of pigs as a biomedical model in human neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Animais , Suínos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Estudo de Associação Genômica Ampla , Cromatina/genética , Cromatina/metabolismo , Hipocampo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Forkhead/genética
17.
J Obstet Gynaecol ; 43(2): 2232656, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37462393

RESUMO

Severe pre-eclampsia is a leading cause of maternal and perinatal morbidity and mortality. This retrospective study explored pregnancy outcome predictive values of umbilical artery Doppler with serum adiponectin in severe pre-eclampsia. Fasting elbow venous blood was collected from 118 severe pre-eclampsia patients [maternal systolic pressure ≥ 160 mmHg and/or diastolic pressure ≥ 110 mmHg + minimal proteinuria, 56; mild hypertension + heavy proteinuria (≥2 g/24 h or random urinary protein ≥ 2+), 42; no proteinuria but new-onset hypertension + diseases of heart/lung/liver/kidney/other organs or abnormalities in blood/digestive/nervous systems, placental foetus involved, 20] and 90 controls (18.5-24.9 kg/m2) in the first morning of admission. Serum adiponectin and resistance/pulsatility indexes were separately measured and correlatively analysed by Pearson's coefficient analysis. Adverse outcomes included maternal primary postpartum haemorrhage and placental abruption, neonatal asphyxia, low birth weight, foetal distress, foetal growth restriction. In severe pre-eclampsia, serum adiponectin (downregulated) was negatively-correlated with resistance/pulsatility indexes (upregulated). The area under the curve of umbilical artery Doppler with serum adiponectin for predicting adverse outcomes of severe pre-eclampsia was 0.6545 (specificity 60.27%, sensitivity 60.00%). In conclusion, umbilical artery Doppler with serum adiponectin predicts adverse pregnancy outcomes in severe pre-eclampsia.Impact statementWhat is already known on this subject? Sad levels were lowered in sPE patients. UA ultrasound hemodynamic parameters can predict adverse pregnancy outcomes.What do the results of this study add? Our study revealed that ultrasonic hemodynamic indexes of UA combined with Sad levels had better efficacy in predicting pregnancy outcomes in patients with sPE, and our study is expected to improve the accuracy of clinical prediction of adverse outcomes in sPE patients.What are the implications of these findings for clinical practice and/or further research? Through the combined detection of multiple indicators of the foetus in the mother, our study expects to be able to monitor and predict the growth of the foetus in the mother more accurately in clinical practice, avoid excessive intervention or untimely intervention, and reduce the incidence of perinatal adverse pregnancy outcomes.


Assuntos
Hipertensão , Pré-Eclâmpsia , Recém-Nascido , Gravidez , Humanos , Feminino , Resultado da Gravidez , Artérias Umbilicais/diagnóstico por imagem , Adiponectina , Estudos Retrospectivos , Placenta , Hipertensão/complicações , Hemodinâmica , Ultrassonografia Pré-Natal/métodos
18.
Environ Res ; 236(Pt 2): 116749, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37507040

RESUMO

Nanotechnology is an emerging technology that uses medicinal plants to extract nanoparticles for conventional applications. In the present investigation, the medical plant Tulsi (Ocimum sanctum) has used in the synthesis of cobalt (Co) nanoparticles in a cost-effective, feasible process. The efficiency of nanoparticles in removing methyl orange dye was evaluated by analyzing their applications in wastewater treatment. An analysis of the anti-inflammatory and anti-cancer properties of Tulsi-mediated Co nanoparticles was conducted to examine their medical application. Morphological analysis of Co nanoparticles showed that the synthesized nanoparticles were in crystal shape with a mean particle size of 110 nm. A batch adsorption study has shown that incubation periods of 5 h, pH 2, temperatures of 70 °C, and adsorbent dosage of 125 µg/mL are optimal for removing methyl orange dye from wastewater. To examine the anti-inflammatory properties of Tulsi-mediated Co nanoparticles, protein denaturation and nitric oxide scavenging assays were performed. The maximum anti-inflammatory response was recorded at a concentration of 250 µg/mL of Co nanoparticles. MTT assays against MDA-MB-231 human breast cancer cells were used to evaluate the anti-cancer properties of Co nanoparticles. This study investigates the economical extraction of Co nanoparticles from tulsi and its potential use in wastewater purification and biomedical applications.

19.
Sci Rep ; 13(1): 7797, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179446

RESUMO

Fecal samples from participants aged 60-80 were collected and sequenced by a high-throughput second-generation sequencer to explore the structural composition of gut microbiota in elderly patients with hepatocellular carcinoma(HCC). Comparison of gut microbiota between patients with hepatocellular carcinoma and healthy controls, α diversity and ß diversity were statistically different. At the genus level, compared with the normal group, the abundance of A Blautia, Fusicatenibacter, Anaerostipes, Lachnospiraceae_ND3007_group, CAG-56, Eggerthella, Lachnospiraceae_FCS020_group and Olsenella were decreased significantly in the LC group. In contrast, the abundance of Escherichia-Shigella, Fusobacterium, Megasphaera, Veillonella, Tyzzerella_4, Prevotella_2 and Cronobacter increased significantly. The KEGG and COG pathway analyses showed that the dysbiosis of gut bacteria in primary liver carcinoma is associated with several pathways, including amino acid metabolism, replication and repair, nucleotide metabolism, cell motility, cell growth and death, and transcription. Age is negatively associated with the abundance of Bifidobacterium. Lachnospiraceae_ ND3007_ group, [Eubacterium]_hallii_group, Blautia, Fuscatenibacter and Anaerostipes are negatively correlated with ALT, AST and GGT levels (p < 0.05), respectively. Alpha-fetoprotein (AFP) is positively associated with the abundance of Erysipelatoclostridium, Magasphaera, Prevotella 2, Escherichia-Shigella, Streptococcus and [Eubacterium]_eligens_group (p < 0.05), respectively. A random forest model showed that the genera Eggerthella, Anaerostipes, and Lachnospiraceae_ ND3007_ group demonstrated the best predictive capacity. The area under the Receiver Operating Characteristic Curve of Eggerthella, Anaerostipes and Lachnospiraceae_ ND3007_ group are 0.791, 0.766 and 0.730, respectively. These data are derived from the first known gut microbiome study in elderly patients with hepatocellular carcinoma. Potentially, specific microbiota can be used as a characteristic index for screening, diagnosis, and prognosis of gut microbiota changes in elderly patients with hepatocellular carcinoma and even as a therapeutic clinical target.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Idoso , Humanos , Disbiose/microbiologia , Bactérias/genética , Fezes/microbiologia , RNA Ribossômico 16S
20.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771056

RESUMO

Soy protein isolate (SPI) is an attractive natural material for preparing wood adhesives that has found broad application. However, poor mechanical properties and unfavorable water resistance of wood composites with SPI adhesive bonds limit its more extensive utilization. The combination of lysine (Lys) with a small molecular structure as a curing agent for modified soy-based wood adhesive allows Lys to penetrate wood pores easily and can result in better mechanical strength of soy protein-based composites, leading to the formation of strong chemical bonds between the amino acid and wood interface. Scanning electron microscopy (SEM) results showed that the degree of penetration of the S/G/L-9% adhesive into the wood was significantly increased, the voids, such as ducts of wood at the bonding interface, were filled, and the interfacial bonding ability of the plywood was enhanced. Compared with the pure SPI adhesive, the corresponding wood breakage rate was boosted to 84%. The wet shear strength of the modified SPI adhesive was 0.64 MPa. When Lys and glycerol epoxy resin (GER) were added, the wet shear strength of plywood prepared by the S/G/L-9% adhesive reached 1.22 MPa, which increased by 29.8% compared with only GER (0.94 MPa). Furthermore, the resultant SPI adhesive displayed excellent thermostability. Water resistance of S/G/L-9% adhesive was further enhanced with respect to pure SPI and S/GER adhesives through curing with 9% Lys. In addition, this work provides a new and feasible strategy for the development and application of manufacturing low-cost, and renewable biobased adhesives with excellent mechanical properties, a promising alternative to traditional formaldehyde-free adhesives in the wood industry.


Assuntos
Lisina , Proteínas de Soja , Proteínas de Soja/química , Lisina/análise , Resinas Epóxi/análise , Adesivos/química , Madeira/química , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA