Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38842415

RESUMO

Quasi-two-dimensional perovskite has been widely used in blue perovskite light-emitting diodes. However, the performance of these devices is still hampered by random phase distribution, nonradiative recombination, and imbalanced carrier transport. In this work, an effective strategy is proposed to mitigate these limitations by inserting lithium salts at the interfaces between the hole transport layer (HTL) and the perovskite layer. The perovskite film on the inserted Li2CO3 layer exhibits reasonable n-value redistribution, which leads to the repressive nonradiation recombination and enhanced carrier transport. Moreover, the inserted Li2CO3 layer also improves the electrical conductivity of PEDOT:PSS and hinders indium ion diffusion from the PEDOT:PSS layer to the perovskite film, which inhibits exciton quenching and nonradiative recombination loss at the HTL/perovskite interface. Taking advantage of these merits, we have successfully fabricated efficient pure-blue PeLEDs with an external quantum efficiency of 6.2% at 472 nm and a luminance of 726 cd cm-2. The restraint of nonradiative recombination at the interface offers a promising approach for efficient pure-blue PeLEDs.

2.
Nat Nanotechnol ; 19(5): 638-645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649747

RESUMO

Perovskite quantum dots (QDs) are promising for various photonic applications due to their high colour purity, tunable optoelectronic properties and excellent solution processability. Surface features impact their optoelectronic properties, and surface defects remain a major obstacle to progress. Here we develop a strategy utilizing diisooctylphosphinic acid-mediated synthesis combined with hydriodic acid-etching-driven nanosurface reconstruction to stabilize CsPbI3 QDs. Diisooctylphosphinic acid strongly adsorbs to the QDs and increases the formation energy of halide vacancies, enabling nanosurface reconstruction. The QD film with nanosurface reconstruction shows enhanced phase stability, improved photoluminescence endurance under thermal stress and electric field conditions, and a higher activation energy for ion migration. Consequently, we demonstrate perovskite light-emitting diodes (LEDs) that feature an electroluminescence peak at 644 nm. These LEDs achieve an external quantum efficiency of 28.5% and an operational half-lifetime surpassing 30 h at an initial luminance of 100 cd m-2, marking a tenfold improvement over previously published studies. The integration of these high-performance LEDs with specifically designed thin-film transistor circuits enables the demonstration of solution-processed active-matrix perovskite displays that show a peak external quantum efficiency of 23.6% at a display brightness of 300 cd m-2. This work showcases nanosurface reconstruction as a pivotal pathway towards high-performance QD-based optoelectronic devices.

3.
ACS Nano ; 18(15): 10609-10617, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569090

RESUMO

Controlling interfacial reactions is critical for zinc oxide (ZnO)-based inverted perovskite light-emitting diodes (PeLEDs), boosting the external quantum efficiency (EQE) of the near-infrared device to above 20%. However, violent interfacial reactions between the bromine-based perovskites and ZnO-based films severely limit the performance of inverted green PeLEDs, whose efficiency and stability lag far behind those of their near-infrared counterparts. Here, a controllable interfacial amidation between the bromine-based perovskites and magnesium-doped ZnO (ZnMgO) film utilizing caprylyl sulfobetaine (SFB) is realized. The SFB molecules strongly interact with formamidinium bromide, decelerating the amidation reaction between formamidinium and carboxylate groups on the ZnMgO film, thus regulating the crystallization of FAPbBr3. Combined with the passivation of benzylamine, a FAPbBr3 bulk film directly deposited on a ZnMgO substrate with single-crystal characteristics is obtained, exhibiting a high photoluminescence quantum yield of above 80%. The resultant PeLEDs demonstrate a peak EQE of exceeding 20% at a high luminance of 120,000 cd m-2 and a half lifetime of 26 min at 11,000 cd m-2, representing the state-of-the-art inverted green electroluminescence. This work resolves the crucial issues of violent interfacial reactions and provides a strategy toward inverted green PeLEDs with outstanding performance.

4.
ACS Nano ; 18(12): 8673-8682, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471123

RESUMO

Developing green perovskite light-emitting diodes (PeLEDs) with a high external quantum efficiency (EQE) and low efficiency roll-off at high brightness remains a critical challenge. Nanostructured emitter-based devices have shown high efficiency but restricted ascending luminance at high current densities, while devices based on large-sized crystals exhibit low efficiency roll-off but face great challenges to high efficiency. Herein, we develop an all-inorganic device architecture combined with utilizing tens-of-nanometers-sized CsPbBr3 (TNS-CsPbBr3) emitters in a carrier-confined heterostructure to realize green PeLEDs that exhibit high EQEs and low efficiency roll-off. A typical type-I heterojunction containing TNS-CsPbBr3 crystals and wide-bandgap Cs4PbBr6 within a grain is formed by carefully controlling the precursor ratio. These heterostructured TNS-CsPbBr3 emitters simultaneously enhance carrier confinement and retain low Auger recombination under a large injected carrier density. Benefiting from a simple device architecture consisting of an emissive layer and an oxide electron-transporting layer, the PeLEDs exhibit a sub-bandgap turn-on voltage of 2.0 V and steeply rising luminance. In consequence, we achieved green PeLEDs demonstrating a peak EQE of 17.0% at the brightness of 36,000 cd m-2, and the EQE remained at 15.7% and 12.6% at the brightness of 100,000 and 200,000 cd m-2, respectively. In addition, our results underscore the role of interface degradation during device operation as a factor in device failure.

5.
Angew Chem Int Ed Engl ; 63(11): e202318777, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258990

RESUMO

High-performance pure red perovskite light-emitting diodes (PeLEDs) with an emission wavelength shorter than 650 nm are ideal for wide-color-gamut displays, yet remain an unprecedented challenge to progress. Mixed-halide CsPb(Br/I)3 emitter-based PeLEDs suffer spectral stability induced by halide phase segregation and CsPbI3 quantum dots (QDs) suffer from a compromise between emission wavelength and electroluminescence efficiency. Here, we demonstrate efficient pure red PeLEDs with an emission centered at 638 nm based on PbClx -modified CsPbI3 QDs. A nucleophilic reaction that releases chloride ions and manipulates the ligand equilibrium of the colloidal system is developed to synthesize the pure red emission QDs. The comprehensive structural and spectroscopic characterizations evidence the formation of PbClx outside the CsPbI3 QDs, which regulates exciton recombination and prevents the exciton from dissociation induced by surface defects. In consequence, PeLEDs based on PbClx -modified CsPbI3 QDs with superior optoelectronic properties demonstrate stable electroluminescence spectra at high driving voltages, a record external quantum efficiency of 26.1 %, optimal efficiency roll-off of 16.0 % at 1000 cd m-2 , and a half lifetime of 7.5 hours at 100 cd m-2 , representing the state-of-the-art pure red PeLEDs. This work provides new insight into constructing the carrier-confined structure on perovskite QDs for high-performance PeLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA