Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255500

RESUMO

The effects of vanadium addition on the solidification microstructure and mechanical properties of Al-4Ni alloy were investigated via thermodynamic computation, thermal analysis, microstructural observations, and mechanical properties testing. The results show that the nucleation temperature of primary α-Al increased with increased vanadium addition. A transition from columnar to equiaxed growth took place when adding vanadium to Al-4Ni alloys, and the average grain size of primary α-Al was reduced from 1105 µm to 252 µm. When the vanadium addition was 0.2 wt%, the eutectic nucleation temperature increased from 636.2 °C for the Al-4Ni alloy to 640.5 °C, and the eutectic solidification time decreased from 310 s to 282 s. The average diameter of the eutectic Al3Ni phases in the Al-4Ni-0.2V alloy reduced to 0.14 µm from 0.26 µm for the Al-4Ni alloy. As the vanadium additions exceeded 0.2 wt%, the eutectic nucleation temperature had no obvious change and the eutectic solidification time increased. The eutectic Al3Ni phases began to coarsen, and the number of lamellar eutectic boundaries increased. The mechanical properties of Al-4Ni alloys gradually increased with vanadium addition (0-0.4 wt%). The Al-4Ni-0.4V alloy obtained the maximum tensile strength and elongation values, which were 136.4 MPa and 23.5%, respectively. As the vanadium addition exceeded 0.4 wt%, the strength and elongation decreased, while the hardness continued to increase. Fracture in the Al-4Ni-0.4V alloy exhibited ductile fracture, while fracture in the Al-4Ni-0.6V alloy was composed of dimples, tear edges, and cleavage planes, demonstrating mixed ductile-brittle fracture. The cleavage planes were caused by the primary Al10V and coarse Al3Ni phases at the boundary of eutectic cells.

2.
Materials (Basel) ; 16(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37834516

RESUMO

Building heterojunctions is a promising strategy for the achievement of highly efficient photocatalysis. Herein, a novel SnIn4S8@ZnO Z-scheme heterostructure with a tight contact interface was successfully constructed using a convenient two-step hydrothermal approach. The phase composition, morphology, specific surface area, as well as photophysical characteristics of SnIn4S8@ZnO were investigated through a series of characterization methods, respectively. Methylene blue (MB) was chosen as the target contaminant for photocatalytic degradation. In addition, the degradation process was fitted with pseudo-first-order kinetics. The as-prepared SnIn4S8@ZnO heterojunctions displayed excellent photocatalytic activities toward MB degradation. The optimized sample (ZS800), in which the molar ratio of ZnO to SnIn4S8 was 800, displayed the highest photodegradation efficiency toward MB (91%) after 20 min. Furthermore, the apparent rate constant of MB photodegradation using ZS800 (0.121 min-1) was 2.2 times that using ZnO (0.054 min-1). The improvement in photocatalytic activity could be ascribed to the efficient spatial separation of photoinduced charge carriers through a Z-scheme heterojunction with an intimate contact interface. The results in this paper bring a novel insight into constructing excellent ZnO-based photocatalytic systems for wastewater purification.

3.
Materials (Basel) ; 12(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995788

RESUMO

In this study, Al, Zn, Mg and Cu elemental metal powders were chosen as the raw powders. The nanocrystalline Al-7Zn-2.5Mg-2.5Cu bulk alloy was prepared by mechanical alloying and spark plasma sintering. The effect of milling time on the morphology and crystal structure was investigated, as well as the microstructure and mechanical properties of the sintered samples. The results show that Zn, Mg and Cu alloy elements gradually dissolved in α-Al with the extension of ball milling time. The morphology of the ball-milled Al powder exhibited flaking, crushing and welding. When the ball milling time was 30 h, the powder particle size was 2-5 µm. The α-Al grain size was 23.2 nm. The lattice distortion was 0.156% causing by the solid solution of the metal atoms. The grain size of ball-milled powder grew during the spark plasma sintering process. The grain size of α-Al increased from 23.2 nm in the powder to 53.5 nm in the sintered sample during the sintering process after 30 h of ball milling. At the same time, the bulk alloy precipitated micron-sized Al2Cu and nano-sized MgZn2 in the α-Al crystal. With the extension of ball milling time, the compression strength, yield strength and Vickers hardness of spark plasma sintering (SPS) samples increased, while the engineering strain decreased. The compression strength, engineering strain and Vickers hardness of sintered samples prepared by 30 h milled powder were ~908 MPa, ~8.1% and ~235 HV, respectively. The high strength of the nanocrystalline Al-7Zn-2.5Mg-2.5Cu bulk alloy was attributed to fine-grained strengthening, dislocation strengthening and Orowan strengthening due to the precipitated second phase particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA