Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 100(4): 550-564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252315

RESUMO

PURPOSE: In the event of a large-scale radiological accident, rapid and high-throughput biodosimetry is the most vital basis in medical resource allocation for the prompt treatment of victims. However, the current biodosimeter is yet to be rapid and high-throughput. Studies have shown that ionizing radiation modulates expressions of circular RNAs (circRNAs) in healthy human cell lines and tumor tissue. circRNA expressions can be quantified rapidly and high-throughput. However, whether circRNAs are suitable for early radiation dose classification remains unclear. METHODS: We employed transcriptome sequencing and bioinformatics analysis to screen for radiation-differentially expressed circRNAs in the human lymphoblastoid cell line AHH-1 at 4 h following exposure to 0, 2, and 5 Gy 60Co γ-rays. The dose-response relationships between differentially expressed circRNA expressions and absorbed doses were investigated using real-time polymerase chain reaction and linear regression analysis at 4 h, 24 h, and 48 h post-exposure to 0, 2, 4, 6, and 8 Gy. Six distinct dose classification models of circRNA panels were established and validated by receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 11 radiation-differentially expressed circRNAs were identified and validated. Based on dose-response effects, those circRNAs changed in a dose-responsive or dose-dependent manner were combined into panels A through F at 4 h, 24 h, and 48 h post-irradiation. ROC curve analysis showed that panels A through C had the potential to effectively classify exposed and non-exposed conditions, which area under the curve (AUC) of these three panels were all 1.000, and the associate p values were .009. Panels D through F excellently distinguished between different dose groups (AUC = 0.963-1.000, p < .05). The validation assay showed that panels A through F demonstrated consistent excellence in sensitivity and specificity in dose classification. CONCLUSIONS: Ionizing radiation can indeed modulate the circRNA expression profile in the human lymphoblastoid cell line AHH-1. The differentially expressed circRNAs exhibit the potential for rapid and high-throughput dose classification.


Assuntos
RNA Circular , RNA , Humanos , RNA Circular/genética , RNA/genética , RNA/metabolismo , Curva ROC , Sensibilidade e Especificidade , Linhagem Celular
2.
Int J Radiat Biol ; 99(12): 1948-1960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37530590

RESUMO

PURPOSE: Ionizing radiation (IR)-induced transcriptional changes are considered a potential biodosimetry for dose evaluation and health risk monitoring of acute or chronic radiation exposure. It is crucial to understand the impact of confounding factors on the radiation-responsive gene expressions for accurate and reproducible dose assessment. This study aims to explore the potential influence of exposures to chemotherapeutic agents such as cyclophosphamide (CP) and mitomycin C (MMC) on IR-induced transcriptional biomarkers. METHODS: The human B lymphoblastoid cells (AHH-1) were exposed to 0, 20, 50, 100, 200 and 500 µg/ml CP or 0, 0.025, 0.05, 0.1 and 1 µg/ml MMC, respectively. The appropriate concentrations of CP and MMC were added for 1 h before irradiation with 0, 2, 4 and 6 Gy of 60Co γ-rays at a dose rate of 1 Gy/min. Cell viability was evaluated by CCK-8 assay. The gene expression responses of 18 radiation-induced transcriptional biomarkers were examined at 24 h after exposures to CP and MMC, respectively. The expression levels of five crucial DNA interstrand crosslinks (ICLs) repair genes were also evaluated. The biodosimetry models were established based on the specific radiation-responsive gene combinations. RESULTS: The baseline transcriptional levels of the 18 selected genes were slightly affected by CP treatment in the absence of IR, while the transcript responses to IR could be inhibited as the concentration of CP up to 50 µg/ml. MMC treatment up-regulated the background levels in most radiation-responsive gene expressions. Of 18 genes, only the relative mRNA expression levels of CDKN1A and BBC3 were repressed after treatment with IR and MMC in combination. The relative mRNA level of RAD51 was significantly up-regulated after exposure to CP, while the expression of FANCD2, RAD51 and BLM showed an overall increase in response to MMC treatment. After irradiation, the relative mRNA expression levels of FANCD2, BRCA2 and RAD51 exhibited dose-dependent increases in IR alone and MMC treatment groups. In addition, the biodosimetry models were established using 2-4 radiation-responsive genes based on different radiation exposure scenarios. CONCLUSION: Our findings suggested that IR-induced gene expression changes were slightly affected after exposure to a relatively low concentration of CP and MMC. Gene expression combinations might improve the broad applicability of transcriptional biodosimetry across diverse radiation exposures.


Assuntos
Mitomicina , Humanos , Mitomicina/farmacologia , Ciclofosfamida/farmacologia , Raios gama , Biomarcadores , RNA Mensageiro/metabolismo , Relação Dose-Resposta à Radiação
3.
Biomarkers ; 27(5): 448-460, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35315697

RESUMO

INTRODUCTION: In the event of radiological accidents and cancer radiotherapies in the clinic, the gastrointestinal (GI) system is vulnerable to ionizing radiation and shows GI injury. Accessible biomarkers may provide means to predict, evaluate, and treat GI tissue damage. The current study investigated radiation GI injury biomarkers in rat plasma. MATERIAL AND METHODS: High-coverage targeted lipidomics was employed to profile lipidome perturbations at 72 h after 0, 1, 2, 3, 5, and 8 Gy (60Co γ-rays at 1 Gy/min) total-body irradiation in male rat jejunum. The results were correlated with previous plasma screening outcomes. RESULTS: In total, 93 differential metabolites and 28 linear dose-responsive metabolites were screened in the jejunum. Moreover, 52 lipid species with significant differences both in jejunum and plasma were obtained. Three lipid species with linear dose-response relationship both in jejunum and plasma were put forth, which exhibited good to excellent sensitivity and specificity in triaging different exposure levels. DISCUSSION: The linear dose-effect relationship of lipid metabolites in the jejunum and the triage performance of radiation GI injury biomarkers in plasma were studied for the first time. CONCLUSION: The present study can provide insights into expanded biomarkers of IR-mediated GI injury and minimally invasive assays for evaluation.


Assuntos
Lipidômica , Irradiação Corporal Total , Animais , Biomarcadores/metabolismo , Raios gama , Lipídeos , Masculino , Ratos
4.
Artigo em Inglês | MEDLINE | ID: mdl-34266630

RESUMO

In order to assess the health risk of low-dose radiation to radiation professionals, monitoring is performed through chromosomal aberration analysis and micronuclei (MN) analysis. MN formation has drawbacks for monitoring in the low-dose range. Nucleoplasmic bridge (NPB) analysis, with a lower background level, has good dose-response relationships at both high and relatively low dose ranges. Dicentric and ring chromosomes were analyzed in 199 medical radiation professionals, and NPB/MN yields were analyzed in 205 radiation professionals. The effects of sex, age of donor, types of work, and length of service on these cytogenetic endpoints were also analyzed. The yields of the three cytogenetic endpoints were significantly higher in radiation professionals versus controls. Frequencies of dicentric plus ring chromosomes were affected by length of service. NPB frequencies were influenced by type of work and length of service. MN yields were affected not only by types of work and length of service but also by donor sex and age. In conclusion, dicentric plus ring chromosomes, NPB, and MN can be induced by low-dose radiation in radiation professionals. NPB is a potential biomarker to assess the health risk of occupational low-dose radiation exposure.


Assuntos
Raios gama/efeitos adversos , Linfócitos/efeitos da radiação , Exposição Ocupacional/efeitos adversos , Lesões por Radiação/genética , Adulto , Idoso , Núcleo Celular/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Análise Citogenética/métodos , Citogenética/métodos , Dano ao DNA/efeitos da radiação , Feminino , Humanos , Masculino , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Testes para Micronúcleos/métodos , Pessoa de Meia-Idade , Radiação Ionizante , Adulto Jovem
5.
Int J Radiat Biol ; 97(5): 657-663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704009

RESUMO

PURPOSE: The objective of this research was to explore the dose-effect relationships of dicentric plus ring (dic + r), micronucleus (MN) and nucleoplasmic bridges (NPB) induced by carbon ions in human lymphocytes. MATERIALS AND METHODS: Venous blood samples were collected from three healthy donors. 12C6+ ions beam was used to irradiate the blood samples at the energy of 330 MeV and linear energy transfer (LET) of 50 keV/µm with a dose rate of 1 Gy/min in the spread-out Bragg peak. The irradiated doses were 0 (sham irradiation), 1, 2, 3, 4, 5 and 6 Gy. Dic + r chromosomes aberrations were scored in metaphases. The cytokinesis-block micronucleus cytome (CBMN) was conducted to analyze MN and NPB. The maximum low-dose relative biological effectiveness (RBEM) values of the induction of dic + r, MN and NPB in human lymphocytes for 12C6+ ions irradiation was calculated relative to 60Co γ-rays. RESULTS: The frequencies of dic + r, MN and NPB showed significantly increases in a dose-depended manner after exposure to 12C6+ ions. The distributions of dic + r and MN exhibited overdispersion, while the distribution of NPB agreed with Poisson distribution at all doses. Linear-quadratic equations were established based on the frequencies of dic + r and MN. The dose-response curves of NPB frequencies followed a linear model. The derived RBEM values for dic + r, MN and NPB in human lymphocytes irradiated with 12C6+ ions were 8.07 ± 2.73, 2.69 ± 0.20 and 4.00 ± 2.69 in comparison with 60Co γ-rays. CONCLUSION: The dose-response curves of carbon ions-induced dic + r, MN and NPB were constructed. These results could be helpful to improve radiation risk assessment and dose estimation after exposed to carbon ions irradiation.


Assuntos
Carbono/efeitos adversos , Núcleo Celular/efeitos da radiação , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Cromossomos em Anel , Núcleo Celular/metabolismo , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/citologia , Testes para Micronúcleos
6.
Artigo em Inglês | MEDLINE | ID: mdl-33678246

RESUMO

Previous studies showed that the yield of cobalt-60 γ-rays-induced nucleoplasmic bridges (NPB) in human peripheral blood lymphocytes is dose dependent. However, the influence of the radiation quality and dose rates on NPB frequencies has not been investigated. The present study aimed to investigate NPB frequencies in human peripheral blood lymphocytes induced by carbon ions and explore the dose rate effect on cobalt-60 γ-rays-induced NPB. To establish dose-response curves, human peripheral blood samples were irradiated with 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 and 8.0 Gy of carbon ions at a dose rate of 3.0 Gy/min in vitro. To explore the dose rate effect, human peripheral blood samples were irradiated with 2.0 and 5.0 Gy of cobalt-60 γ-rays at dose rates of 0.2, 0.5, 1.0, 3.0, 5.0 and 10.0 Gy/min in vitro. NPB and micronuclei (MN) in binucleated cells were analyzed with the cytokinesis-block micronucleus cytome assay. Results showed that the dose-response curve of carbon ion-induced NPB frequencies follow a linear-quadratic model (R2 = 0.934). The relative biological effectiveness (RBE) values of carbon ions to cobalt-60 γ-rays decreased with increased NPB frequencies (ranging from 2.47 to 5.86). Compared with group 1.0 Gy/min, the NPB frequencies in groups 10.0 Gy/min (2.0 Gy), 5.0 and 10.0 Gy/min (5.0 Gy) were decreased significantly (P < 0.05). Carbon ion-induced NPB in human peripheral blood lymphocytes have a good dose-response relationship. Cobalt-60 γ-rays-induced NPB frequencies are affected by the specific dose rate.


Assuntos
Radioisótopos de Cobalto , Dano ao DNA , Raios gama/efeitos adversos , Linfócitos/metabolismo , Adulto , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/patologia , Masculino , Testes para Micronúcleos
7.
J Proteome Res ; 20(1): 576-590, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200940

RESUMO

Rapid early triage and dose estimation is vital for limited medical resource allocation and treatment of a large number of the wounded after radiological accidents. Lipidomics has been utilized to delineate biofluid lipid signatures after irradiation. Here, high-coverage targeted lipidomics was employed to screen radiosensitive lipids after 0, 1, 2, 3, 5, and 8 Gy total body irradiation at 4, 24, and 72 h postirradiation in rat plasma. Ultra-performance liquid chromatography-tandem mass spectrometry with a multiple reaction monitoring method was utilized. In total, 416 individual lipids from 18 major classes were quantified and those biomarkers altered in a dose-dependent manner constituted panel A-panel D. Receiver operator characteristic curve analysis using combined lipids showed good to excellent sensitivity and specificity in triaging different radiation exposure levels (area under curve = 0.814-1.000). The equations for dose estimation were established by stepwise regression analysis for three time points. A novel strategy for radiation early triage and dose estimation was first established and validated using panels of lipids. Our study suggests that it is feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage, which can provide further insights in developing lipidomics strategies for radiation biodosimetry in humans.


Assuntos
Lipidômica , Exposição à Radiação , Animais , Lipídeos , Plasma , Ratos , Triagem
8.
Int J Radiat Biol ; 96(6): 748-758, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32149567

RESUMO

Purpose: Simple, rapid and high-throughput dose assessment is critical for clinical diagnosis, treatment and emergency intervention in a large-scale radiological accident. The goal of this study is to screen and identify new ionizing radiation-responsive protein biomarkers in rat plasma.Materials and methods: Sprague-Dawley rats were exposed to single doses of 0, 1, 3, 5 Gy of Cobalt-60 γ-rays total body irradiation at a dose rate of 1 Gy/min. The tandem mass tag labeling (TMT) combined with liquid chromatography mass spectrometry (LC-MS/MS) approach was used to screen the differentially expressed proteins in rat plasma collected at 1, 3, 5 and 7 days post-irradiation. Bioinformatics analysis was conducted to explore the biological functions of these proteins. The expression levels of candidate radiation-sensitive protein biomarkers were confirmed using enzyme-linked immune-sorbent assay (ELISA).Results: A total of 503 differentially expressed proteins were identified. Most of these proteins were implicated in immune response, phagocytosis and signal transduction following ionizing radiation. Five up-regulated proteins including alpha-2-macroglobulin (A2m), chromogranin-A (CHGA), glutathione pertidase 3 (GPX3), clusterin (Clu) and ceruloplasmin (Cp) were selected for ELISA analysis. It was found that the expression levels of A2m, CHGA and GPX3 protein were increased in a dose-dependent manner at 1, 3 and 5 days after irradiation.Conclusion: Proteomics analysis revealed radiation-induced differentially expressed proteins in rat plasma. Our results suggested that A2m, CHGA, GPX3 protein expressions alterations in rat plasma may have potential as biomarkers to evaluate radiation exposure.


Assuntos
Proteínas Sanguíneas/metabolismo , Raios gama/efeitos adversos , Regulação da Expressão Gênica/efeitos da radiação , Animais , Biomarcadores/sangue , Proteínas Sanguíneas/genética , Ontologia Genética , Mapas de Interação de Proteínas/efeitos da radiação , Ratos , Ratos Sprague-Dawley
9.
Dose Response ; 18(4): 1559325820979570, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33402881

RESUMO

Metabolomics has great potential to process accessible biofluids through high-throughput and quantitative analysis for radiation biomarker screening. This study focused on the potential radiation responsive metabolites in rat plasma and the dose-response relationships. In the discovery stage, 20 male Sprague-Dawley rats were exposed to 0, 1, 3 and 5 Gy of cobalt-60 gamma rays at a dose rate of 1 Gy/min. Plasma samples were collected at 72 h after exposure and analyzed using liquid chromatography mass spectrometry based on non-targeted metabolomics. In the verification stage, 50 additional rats were exposed to 0, 1, 2, 3, 5 and 8 Gy of gamma rays. The concentrations of candidate metabolites were then analyzed using targeted metabolomics methods. Fifteen candidate radiation responsive metabolites were identified as potential radiation metabolite biomarkers. Metabolic pathways, such as linoleic acid metabolism and glycerophospholipid metabolism pathways, were changed after irradiation. Six radiation responsive metabolites, including LysoPC(20:2), LysoPC(20:3), PC(18:0/22:5), L-palmitoylcarnitine, N-acetylornithine and butyrylcarnitine, had good dose-response relationships (R 2 > 0.80). The area under the curve of the panel of the 6 radiation responsive metabolites was 0.923. The radiation exposure metabolomics biomarkers and dose-response curves may have potential for rapid dose assessment and triage in nuclear and radiation accidents.

10.
Mutat Res Genet Toxicol Environ Mutagen ; 832-833: 29-34, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30057018

RESUMO

Baseline nucleoplasmic bridges (NPB) vary widely in the general population from different regions in the same country or from different countries. The baseline NPB level in the normal Chinese population and the factors affecting the baseline and radiation-induced NPB levels have not been explored yet. The cytokinesis-block micronucleus cytome assay was conducted on the peripheral blood samples of 121 healthy individuals for the baseline NPB and 52 healthy individuals for the 2 Gy γ-ray-induced NPB level. The effects of age and gender on the baseline NPB and 2 Gy γ-ray-induced NPB level were evaluated. The overall baseline NPB in the peripheral blood lymphocytes of 121 healthy adults from the general population in China was 0.46 ±â€¯0.20 per 1000 binucleated (BN) cells. The overall baseline NPB in males (0.56 ±â€¯0.15 per 1000 BN cells) was higher than that in females (0.36 ±â€¯0.22 per 1000 BN cells, P < 0.05). The effect of age on the baseline NPB was not significant, except for females in the 40-year age group. The overall 2 Gy γ-ray-induced NPB frequency for male donors was lower than that for female donors (P < 0.01). No evident trend of the radiation-induced NPB level with increasing age was observed for both genders. For the baseline micronucleus (MN) and radiation-induced MN levels, the effects of gender and age were confirmed. Therefore, the gender of donors affects the baseline and radiation-induced levels of NPB and MN. In addition, the effect of the age of the donors on the baseline and radiation-induced NPB levels showed no clear pattern and needed to be further investigated.


Assuntos
Núcleo Celular/efeitos da radiação , Radioisótopos de Cobalto , Dano ao DNA , Raios gama , Linfócitos/efeitos da radiação , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Testes para Micronúcleos/métodos , Adulto , Fatores Etários , Idoso , China , Citocinese , Feminino , Voluntários Saudáveis , Humanos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
11.
Radiat Environ Biophys ; 57(3): 215-222, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29774413

RESUMO

Chromosome damage is related to DNA damage and erroneous repair. It can cause cell dysfunction and ultimately induce carcinogenesis. Histone acetylation is crucial for regulating chromatin structure and DNA damage repair. Ionizing radiation (IR) can alter histone acetylation. However, variations in histone acetylation in response to IR exposure and the relationship between histone acetylation and IR-induced chromosome damage remains unclear. Hence, this study investigated the variation in the total acetylation levels of H3 and H4 in human lymphocytes exposed to 0-2 Gy 60Co γ-rays. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was added to modify the histone acetylation state of irradiated cells. Then, the total acetylation level, enzyme activity, dicentric plus centric rings (dic + r) frequencies, and micronucleus (MN) frequencies of the treated cells were analyzed. Results indicated that the acetylation levels of H3 and H4 significantly decreased at 1 and 24 h, respectively, after radiation exposure. The acetylation levels of H3 and H4 in irradiated groups treated with SAHA were significantly higher than those in irradiated groups that were not treated with SAHA. SAHA treatment inhibited HDAC activity in cells exposed to 0-1 Gy 60Co γ-rays. SAHA treatment significantly decreased dic + r/cell and MN/cell in cells exposed to 0.5 or 1.0 Gy 60Co γ-rays relative to that in cells that did not receive SAHA treatment. In conclusion, histone acetylation is significantly affected by IR and is involved in chromosome damage induced by 60Co γ-radiation.


Assuntos
Cromossomos Humanos/genética , Radioisótopos de Cobalto/efeitos adversos , Raios gama/efeitos adversos , Histonas/metabolismo , Linfócitos/efeitos da radiação , Acetilação/efeitos dos fármacos , Acetilação/efeitos da radiação , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Vorinostat
12.
Mutagenesis ; 31(4): 425-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26833100

RESUMO

The dose effect between nucleoplasmic bridges (NPB) and relatively low doses of ionising radiation remains unknown. Accordingly, this study investigated the NPB frequencies in human peripheral blood lymphocytes exposed to low-dose (60)Co γ-rays. Complex anomalies, including fused nuclei (FUS), horse-shoe nuclei (HS) and circular nuclei (CIR), which possibly originated from multiple NPBs, were also scored. Human peripheral blood samples were collected from three healthy males and irradiated with 0-1 and 0-0.4 Gy (60)Co γ-rays. A cytokinesis-block micronucleus cytome assay was then conducted to analyse NPB, PFHC (NPB plus three complex nuclear anomalies) and micronucleus (MN) in binucleated cells. All dose-response curves followed the linear model for both NPB frequency and PFHC cell frequency. The dose-response curves between NPB frequency and absorbed dose at 0-1 and 0-0.4 Gy were y = 0.0037x + 0.0005 (R (2) = 0.979, P < 0.05) and y = 0.0043x + 0.0004 (R (2) = 0.941, P < 0.05), respectively. The dose-response curves between PFHC cell frequency and absorbed dose at 0-1 and 0-0.4 Gy were y = 0.0044x + 0.0007 (R (2) = 0.982, P < 0.05) and y = 0.0059x + 0.0005 (R (2) = 0.969, P < 0.05), respectively. The statistical significance of differences between the irradiated groups (0-0.4 Gy) and background levels of NPB, PFHC and MN were also analysed. The lowest analysable doses of NPB, PFHC and MN were 0.12, 0.08 and 0.08 Gy, respectively. In conclusion, NPBs and PFHC positively correlated with the absorbed radiation at a relatively low dose.


Assuntos
Raios gama , Linfócitos/efeitos da radiação , Micronúcleos com Defeito Cromossômico , Adulto , Células Cultivadas , Relação Dose-Resposta à Radiação , Humanos , Masculino , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA