Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(4): e202214828, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36383099

RESUMO

Extreme fast charging (XFC) of high-energy Li-ion batteries is a key enabler of electrified transportation. While previous studies mainly focused on improving Li ion mass transport in electrodes and electrolytes, the limitations of charge transfer across electrode-electrolyte interfaces remain underexplored. Herein we unravel how charge transfer kinetics dictates the fast rechargeability of Li-ion cells. Li ion transfer across the cathode-electrolyte interface is found to be rate-limiting during XFC, but the charge transfer energy barrier at both the cathode and anode have to be reduced simultaneously to prevent Li plating, which is achieved through electrolyte engineering. By unlocking charge transfer limitations, 184 Wh kg-1 pouch cells demonstrate stable XFC (10-min charge to 80 %) which is otherwise unachievable, and the lifetime of 245 Wh kg-1 21700 cells is quintupled during fast charging (25-min charge to 80 %).

2.
Angew Chem Int Ed Engl ; 61(39): e202210365, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35938731

RESUMO

The access to full performance of state-of-the-art Li-ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li-ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real-time operando determination for lithium plating in a working battery.

3.
Angew Chem Int Ed Engl ; 60(8): 4090-4097, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32976693

RESUMO

The performance of Li-ion batteries (LIBs) is highly dependent on their interfacial chemistry, which is regulated by electrolytes. Conventional electrolyte typically contains polar solvents to dissociate Li salts. Herein we report a weakly solvating electrolyte (WSE) that consists of a pure non-polar solvent, which leads to a peculiar solvation structure where ion pairs and aggregates prevail under a low salt concentration of 1.0 M. Importantly, WSE forms unique anion-derived interphases on graphite electrodes that exhibit fast-charging and long-term cycling characteristics. First-principles calculations unravel a general principle that the competitive coordination between anions and solvents to Li ions is the origin of different interfacial chemistries. By bridging the gap between solution thermodynamics and interfacial chemistry in batteries, this work opens a brand-new way towards precise electrolyte engineering for energy storage devices with desired properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA