Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12601-12608, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571078

RESUMO

Silicon avalanche photodiode (APD) single-photon detectors in space are continuously affected by radiation, which gradually degrades their dark count performance. From August 2016 to June 2023, we conducted approximately seven years (2507 days) of in-orbit monitoring of the dark count performance of APD single-photon detectors on the Micius Quantum Science Experimental Satellite. The results showed that due to radiation effects, the dark count growth rate was approximately 6.79 cps/day @ -24 °C and 0.37 cps/day @ -55 °C, with a significant suppression effect on radiation-induced dark counts at lower operating temperature. Based on the proposed radiation damage induced dark count annealing model, simulations were conducted for the in-orbit dark counts of the detector, the simulation results are consistent with in-orbit test data. In May 2022, four of these detectors underwent a cumulative 5.7 hours high-temperature annealing test at 76 °C, dark count rate shows no measurable changes, consistent with annealing model. As of now, these ten APD single-photon detectors on the Micius Quantum Science Experimental Satellite have been in operation for approximately 2507 days and are still functioning properly, providing valuable experience for the future long-term space applications of silicon APD single-photon detectors.

2.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796097

RESUMO

Quantum key distribution (QKD) research has yielded highly fruitful results and is currently undergoing an industrialization transformation. In QKD systems, electro-optic modulators are typically employed to prepare the required quantum states. While various QKD systems operating at GHz repetition frequency have demonstrated exceptional performance, they predominantly rely on instruments or printed circuit boards to fulfill the driving circuit function of the electro-optic modulator. Consequently, these systems tend to be complex with low integration levels. To address this challenge, we have introduced a modulator driver integrated circuit in 0.18 µm SiGe BiCMOS technology. The circuit can generate multiple-level driving signals with a clock frequency of 1.25 GHz and a rising edge of ∼50 ps. Each voltage amplitude can be independently adjusted, ensuring the precise preparation of quantum states. The measured signal-to-noise ratio was more than 17 dB, resulting in a low quantum bit error rate of 0.24% in our polarization-encoding system. This work will contribute to the advancement of QKD system integration and promote the industrialization process in this field.

3.
J Transl Med ; 21(1): 500, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491263

RESUMO

BACKGROUND: Oncolytic virotherapy (OVT) is a promising anti-tumor modality that utilizes oncolytic viruses (OVs) to preferentially attack cancers rather than normal tissues. With the understanding particularly in the characteristics of viruses and tumor cells, numerous innovative OVs have been engineered to conquer cancers, such as Talimogene Laherparepvec (T-VEC) and tasadenoturev (DNX-2401). However, the therapeutic safety and efficacy must be further optimized and balanced to ensure the superior safe and efficient OVT in clinics, and reasonable combination therapy strategies are also important challenges worthy to be explored. MAIN BODY: Here we provided a critical review of the development history and status of OVT, emphasizing the mechanisms of enhancing both safety and efficacy. We propose that oncolytic virotherapy has evolved into the fourth generation as tumor immunotherapy. Particularly, to arouse T cells by designing OVs expressing bi-specific T cell activator (BiTA) is a promising strategy of killing two birds with one stone. Amazing combination of therapeutic strategies of OVs and immune cells confers immense potential for managing cancers. Moreover, the attractive preclinical OVT addressed recently, and the OVT in clinical trials were systematically reviewed. CONCLUSION: OVs, which are advancing into clinical trials, are being envisioned as the frontier clinical anti-tumor agents coming soon.


Assuntos
Melanoma , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Melanoma/terapia , Neoplasias/terapia , Imunoterapia , Terapia Combinada
4.
Phys Rev Lett ; 128(17): 170501, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570417

RESUMO

Long-distance quantum state transfer (QST), which can be achieved with the help of quantum teleportation, is a core element of important quantum protocols. A typical situation for QST based on teleportation is one in which two remote communication partners (Alice and Bob) are far from the entanglement source (Charlie). Because of the atmospheric turbulence, it is challenging to implement the Bell-state measurement after photons propagate in atmospheric channels. In previous long-distance free-space experiments, Alice and Charlie always perform local Bell-state measurement before the entanglement distribution process is completed. Here, by developing a highly stable interferometer to project the photon into a hybrid path-polarization dimension and utilizing the satellite-borne entangled photon source, we demonstrate proof-of-principle QST at the distance of over 1200 km assisted by prior quantum entanglement shared between two distant ground stations with the satellite Micius. The average fidelity of transferred six distinct quantum states is 0.82±0.01, exceeding the classical limit of 2/3 on a single copy of a qubit.

5.
Infect Drug Resist ; 14: 5335-5349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934329

RESUMO

Herpes simplex viruses (HSVs) often cause latent infection for a lifetime, leading to repeated recurrence. HSVs have been engineered as oncolytic HSVs. The mechanism of the latent infection and recurrence remains largely unknown, which brings great challenges and limitations to eliminate HSVs in clinic and engineer safe oHSVs. Here, we systematically reviewed the latest development of the multi-step complex process of HSV latency and reactivation. Significantly, we first summarized the three HSV latent infection pathways, analyzed the structure and expression of the LAT1 and LAT2 of HSV-1 and HSV-2, proposed the regulation of LAT expression by four pathways, and dissected the function of LAT mediated by five LAT products of miRNAs, sRNAs, lncRNAs, sncRNAs and ORFs. We further analyzed that application of HSV LAT deletion mutants in HSV vaccines and oHSVs. Our review showed that deleting LAT significantly reduced the latency and reactivation of HSV, providing new ideas for the future development of safe and effective HSV therapeutics, vaccines and oHSVs. In addition, we proposed that RNA silencing or RNA interference may play an important role in HSV latency and reactivation, which is worth validating in future.

6.
Opt Express ; 29(19): 29595-29603, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614701

RESUMO

Time synchronization is crucial for quantum key distribution (QKD) systems. In order to compensate for the time drift caused by the Doppler effect and adapt to the unstable optical link in satellite-to-ground QKD, previous demonstrations generally adopted synchronization methods requiring additional hardware. In this paper, we present a novel synchronization method based on the detected quantum photons, thus simplifying additional hardware and reducing the complexity and cost. This method adopts target frequency scanning to realize fast frequency recovery, utilizes polynomial fitting to compensate for the Doppler effect, and takes use of the vacuum state in the decoy-state BB84 protocol to recover the time offset. This method can avoid the influence of synchronization light jitter, thus improving the synchronization precision and the secure keys as well. Successful satellite-to-ground QKD based on this new synchronization scheme has been conducted to demonstrate its feasibility and performance. The presented scheme provides an effective synchronization solution for quantum communication applications.

7.
Mol Med Rep ; 24(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643250

RESUMO

Umbilical cord blood transplantation was first reported in 1980. Since then, additional research has indicated that umbilical cord blood stem cells (UCBSCs) have various advantages, such as multi­lineage differentiation potential and potent renewal activity, which may be induced to promote their differentiation into a variety of seed cells for tissue engineering and the treatment of clinical and metabolic diseases. Recent studies suggested that UCBSCs are able to differentiate into nerve cells, chondrocytes, hepatocyte­like cells, fat cells and osteoblasts. The culture of UCBSCs has developed from feeder­layer to feeder­free culture systems. The classical techniques of cell labeling and tracing by gene transfection and fluorescent dye and nucleic acid analogs have evolved to DNA barcode technology mediated by transposon/retrovirus, cyclization recombination­recombinase and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR­associated protein 9 strategies. DNA barcoding for cell development tracing has advanced to include single cells and single nucleic acid mutations. In the present study, the latest research findings on the development and differentiation, culture techniques and labeling and tracing of UCBSCs are reviewed. The present study may increase the current understanding of UCBSC biology and its clinical applications.


Assuntos
Diferenciação Celular/genética , Código de Barras de DNA Taxonômico , Sangue Fetal , Células-Tronco , Células-Tronco Adultas , Animais , Antígenos CD34 , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Linfócitos T , Engenharia Tecidual
8.
Psychoneuroendocrinology ; 132: 105353, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271522

RESUMO

Consolation is a complex empathic behavior that has recently been observed in some socially living rodents. Despite the growing body of literature suggesting that stress affects some simple form of empathy, the relationship between stress and consolation remains largely understudied. Using monogamous mandarin voles, we found that an acute restraint stress exposure significantly reduced consolation-like behaviors and induced anxiety-like behaviors. Along with these behavioral changes, corticotropin-releasing factor (CRF) and CRF receptor 1 (CRFR1) neurons were activated within the anterior cingulate cortex (ACC) and prelimbic cortex (PrL) but not within the infralimbic cortex (IL). Chemogenetic activation of CRF neurons in the ACC and PrL, recaptured acute stress-induced behavioral dysfunctions. We further observed that intracellular PKA and PKC signaling pathways mediate CRF-induced behavioral dysfunctions, but they work in a regional-specific, sex-biased manner. Together, these results suggest that the local CRF-CRFR1 system within the ACC and PrL is involved in the consolation deficits and anxiety induced by acute stress.


Assuntos
Arvicolinae , Hormônio Liberador da Corticotropina , Estresse Psicológico , Animais , Arvicolinae/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Giro do Cíngulo/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
9.
Am J Cancer Res ; 11(6): 2430-2455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249409

RESUMO

Tumor immunotherapy, especially T cell based therapy, is becoming the main force in clinical tumor therapies. Bispecific T cell engager (BiTE) uses the single chain variable fragments (scFv) of two antibodies to redirect T cells to kill target cells. BiTEs for hematologic tumors has been approved for clinical use, and BiTEs for solid tumors showed therapeutic effects in clinical trials. Oncolytic viruses (OVs) of the adenovirus expressing p53 and herpes simplex virus expressing GM-CSF was approved for clinical use in 2003 and 2015, respectively, while other OVs showed therapeutic effects in clinical trials. However, BiTE and Oncolytic virus (OV) have their own limitations. We propose that OV-BiTE has a synergistic effect on tumor immunotherapy. Feng Yu et al. designed the first OV-BiTE in 2014, which remarkably eradicated tumors in mice. Here we review the latest development of the structure, function, preclinical studies and/or clinical trials of BiTE and OV-BiTE and provide perspective views for optimizing the design of OV-BiTE. There is no doubt that OV-BiTE is becoming an exciting new platform for tumor immunotherapy and will enter clinical trial soon. Exploring the therapeutic effects and safety of OV-BiTE for synergistic tumor immunotherapy will bring new hope to tumor patients.

10.
Oncol Rep ; 46(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080662

RESUMO

Cell­cell fusion is a dynamic biological phenomenon, which plays an important role in various physiological processes, such as tissue regeneration. Similarly, normal cells, particularly bone marrow­derived cells (BMDCs), may attempt to fuse with cancer cells to rescue them. The rescue may fail, but the fused cells end up gaining the motility traits of BMDCs and become metastatic due to the resulting genomic instability. In fact, cell­cell fusion was demonstrated to occur in vivo in cancer and was revealed to promote tumor metastasis. However, its existence and role may be underestimated, and has not been widely acknowledged. In the present review, the milestones in cell fusion research were highlighted, the evidence for cell­cell fusion in vitro and in vivo in cancer was evaluated, and the current understanding of the molecular mechanisms by which cell­cell fusion occurs was summarized, to emphasize their important role in tumor metastasis. The summary provided in the present review may promote further study into this process and result in novel discoveries of strategies for future treatment of tumor metastasis.


Assuntos
Instabilidade Genômica , Metástase Neoplásica/patologia , Animais , Fusão Celular , Redes Reguladoras de Genes , Humanos , Metástase Neoplásica/genética
11.
World J Gastrointest Oncol ; 13(2): 92-108, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33643526

RESUMO

Tumor-initiating cells (TICs) or cancer stem cells are believed to be responsible for gastrointestinal tumor initiation, progression, metastasis, and drug resistance. It is hypothesized that gastrointestinal TICs (giTICs) might originate from cell-cell fusion. Here, we systemically evaluate the evidence that supports or opposes the hypothesis of giTIC generation from cell-cell fusion both in vitro and in vivo. We review giTICs that are capable of initiating tumors in vivo with 5000 or fewer in vivo fused cells. Under this restriction, there is currently little evidence demonstrating that giTICs originate from cell-cell fusion in vivo. However, there are many reports showing that tumor generation in vitro occurs with more than 5000 fused cells. In addition, the mechanisms of giTIC generation via cell-cell fusion are poorly understood, and thus, we propose its potential mechanisms of action. We suggest that future research should focus on giTIC origination from cell-cell fusion in vivo, isolation or enrichment of giTICs that have tumor-initiating capabilities with 5000 or less in vivo fused cells, and further clarification of the underlying mechanisms. Our review of the current advances in our understanding of giTIC origination from cell-cell fusion may have significant implications for the understanding of carcinogenesis and future cancer therapeutic strategies targeting giTICs.

12.
Eur Neuropsychopharmacol ; 45: 15-28, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33730683

RESUMO

Physical inactivity, the fourth leading mortality risk factor worldwide, is associated with chronic mental illness. Identifying the mechanisms underlying different levels of baseline physical activity and the effects of these levels on the susceptibility to stress is very important. However, whether different levels of baseline physical activity influence the susceptibility and resilience to chronic social defeat stress (CSDS), and the underlying mechanisms in the brain remain unclear. The present study segregated wild-type mice into low baseline physical activity (LBPA) and high baseline physical activity (HBPA) groups based on short term voluntary wheel running (VWR). LBPA mice showed obvious susceptibility to CSDS, while HBPA mice were resilient to CSDS. In addition, the expression of tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) was lower in LBPA mice than in HBPA mice. Furthermore, activation of TH neurons in the VTA of LBPA mice by chemogenetic methods increased the levels of VWR and resilience to CSDS. In contrast, inhibiting TH neurons in the VTA of HBPA mice lowered the levels of VWR and increased their susceptibility to CSDS. Thus, this study suggests that different baseline physical activities might be mediated by the dopamine system. This system also affects the susceptibility and resilience to CSDS, possibly via alteration of the baseline physical activity. This perspective on the neural control and impacts on VWR may aid the development of strategies to motivate and sustain voluntary physical activity. Furthermore, this can maximize the impacts of regular physical activity toward stress-reduction and health promotion.


Assuntos
Neurônios Dopaminérgicos , Derrota Social , Animais , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Estresse Psicológico , Tirosina 3-Mono-Oxigenase , Área Tegmentar Ventral
13.
Exp Ther Med ; 21(3): 231, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33613704

RESUMO

Phototherapy is universally recognized as the first option for treating neonatal jaundice due to its unparalleled efficiency and safety in reducing the high serum free bilirubin levels and limiting its neurotoxic effects. However, several studies have suggested that phototherapy may elicit a series of short- and long-term adverse reactions associated with pediatric diseases, including hemolysis, allergic diseases, DNA damage or even cancer. The aim of the present review was to summarize the etiology, mechanism, associated risks and therapeutic strategies for reducing high neonatal serum bilirubin levels. In order to shed light on the negative effects of phototherapy and to encourage implementation of a reasonable and standardized phototherapy scheme in the clinic, the present review sought to highlight the current understanding of the adverse reactions of phototherapy, as it is necessary to further study the mechanism underlying the development of the adverse effects of phototherapy in infants in order to explore novel therapeutic alternatives.

14.
Nature ; 589(7841): 214-219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408416

RESUMO

Quantum key distribution (QKD)1,2 has the potential to enable secure communication and information transfer3. In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres4; this distance was later extended to the 100-kilometre scale5,6 with decoy-state QKD and more recently to the 500-kilometre scale7-10 with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory11-14. However, a global QKD network requires a practically (not just theoretically) secure and reliable QKD network that can be used by a large number of users distributed over a wide area15. Quantum repeaters16,17 could in principle provide a viable option for such a global network, but they cannot be deployed using current technology18. Here we demonstrate an integrated space-to-ground quantum communication network that combines a large-scale fibre network of more than 700 fibre QKD links and two high-speed satellite-to-ground free-space QKD links. Using a trusted relay structure, the fibre network on the ground covers more than 2,000 kilometres, provides practical security against the imperfections of realistic devices, and maintains long-term reliability and stability. The satellite-to-ground QKD achieves an average secret-key rate of 47.8 kilobits per second for a typical satellite pass-more than 40 times higher than achieved previously. Moreover, its channel loss is comparable to that between a geostationary satellite and the ground, making the construction of more versatile and ultralong quantum links via geosynchronous satellites feasible. Finally, by integrating the fibre and free-space QKD links, the QKD network is extended to a remote node more than 2,600 kilometres away, enabling any user in the network to communicate with any other, up to a total distance of 4,600 kilometres.

15.
World J Clin Cases ; 9(34): 10400-10417, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35004973

RESUMO

The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally. Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes, their clinical success is limited by drug resistance, treatment failure and recurrence of metastatic disease. Therefore, there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies. Circular RNAs (circRNAs) exhibit a covalently closed structure, high stability and biological conservation, and their expression is associated with the occurrence and development of gastrointestinal tumors. Moreover, circRNAs may significantly influence drug resistance of gastrointestinal cancers. In this article, we review the role of circRNAs in the occurrence and development of gastrointestinal cancer, their association with drug resistance, and potential application for early diagnosis, treatment and prognosis in gastrointestinal malignancies. Furthermore, we summarize characteristics of circRNA, including mechanism of formation and biological effects via mRNA sponging, chromatin replication, gene regulation, translational modification, signal transduction, and damage repair. Finally, we discuss whether circRNA-related noninvasive testing may be clinically provided in the future. This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.

16.
Front Immunol ; 11: 574990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123153

RESUMO

Sphingosine kinase 1 (SPHK1) is a crucial molecule that catalyzes sphingosine to synthesize sphingosine-1-phosphate (S1P), facilitating cell survival signaling. Pyroptosis is a perplexing inflammatory mode of cell death primarily triggered by caspase-1, evoked by the NLRP3 inflammasome. Sphingosine is identified as a danger-associated molecular pattern (DAMP), which activates the NLRP3 inflammasome assembly and induces the pyroptosis. It has been demonstrated that macrophages play a pro-tumorigenic role and are closely associated with tumor progression. Attenuation of SPHK1 activity contributes significantly to macrophage pyroptosis and tumor inhibition. Calcium and integrin-binding protein 1 (CIB1) plays an important role in the translocation of SPHK1 from the cytoplasm to the plasma membrane, whereas CIB2 blocks the subcellular trafficking of SPHK1. Therefore, knockout of CIB1 or over-expression of CIB2 will result in sphingosine accumulation and contribute significantly to cancer treatment by several approaches. First, it directly provokes cancer cell apoptosis or triggers robust anti-tumor immunity by pyroptosis-induced inflammation. Second, it could restrain SPHK1 translocation from the cytoplasm to the plasma membrane and further pyroptosis, which not only drive M2 macrophages death but also facilitate tumor microenvironment inflammation as well as the further release of sphingosine from damaged macrophages. The perspective might provide novel insight into the association between SPHK1 and pyroptosis and suggest the potential target for cancer therapy.


Assuntos
Alarminas/metabolismo , Lisofosfolipídeos/metabolismo , Neoplasias/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piroptose , Esfingosina/análogos & derivados , Animais , Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Piroptose/efeitos dos fármacos , Transdução de Sinais , Esfingosina/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/enzimologia , Macrófagos Associados a Tumor/imunologia
17.
Front Oncol ; 10: 1386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974139

RESUMO

Objective: Herpes simplex viruses (HSVs) are widely spread throughout the world, causing infections from oral, and genital mucous membrane ulcerations to severe viral encephalitis. Glycoprotein B (gB) was the first HSV envelope glycoprotein identified to induce cell fusion. This glycoprotein initiates viral entry and thereby determines the infectivity of HSV, as well as oncolytic HSV (oHSV). Clarifying its molecular characterization and enlarging its motif reservoir will help to engineer oHSV and in cancer treatment applications. Only in recent years has the importance of gB been acknowledged in HSV infection and oHSV engineering. Although gB-modified oHSVs have been developed, the detailed molecular biology of gB needs to be illustrated more clearly in order to construct more effective oHSVs. Method: Here, we performed a systematic comparative sequence analysis of gBs from the 9 HSV-1 and 2 HSV-2 strains, including HSV-1-LXMW, which was isolated by our lab. Online software was implemented to predict gB secondary structure and motifs. Based on extensive literature reviews, a functional analysis of the predicted motifs was performed. Results: Here, we reported the DNA and predicted amino acid sequences of our recently isolated HSV-1-LXMW and found that the strain was evolutionarily close to HSV-1 strains F, H129, and SC16 based on gB analysis. The 22 novel motifs of HSV gB were identified for the first time. An amino acid sequence alignment of the 11 HSV strains showed that the gB motifs are conserved among HSV strains, suggesting that they are functional in vivo. Additionally, we found that certain amino acids within the 13 motifs out of the 22 were reported to be functional in vivo. Furthermore, the gB mutants and gB-engineered oHSVs were also summarized. Conclusion: Our identification of the 22 novel motifs shed light on HSV gB biology and provide new options for gB engineering to improve the efficiency and safety of oHSVs.

18.
Front Oncol ; 10: 1249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793499

RESUMO

Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor involved in homeostatic regulation of normal cells and carcinogenesis of epithelial malignancies. With rapid development of the precision medicine era, a series of new therapies targeting EGFR are underway. Four EGFR monoclonal antibody drugs (cetuximab, panitumumab, nimotuzumab, and necitumumab) are already on the market, and a dozen other EGFR monoclonal antibodies are in clinical trials. Here, we comprehensively review the newly identified biological properties and anti-tumor mechanisms of EGFR monoclonal antibodies. We summarize recently completed and ongoing clinical trials of the classic and new EGFR monoclonal antibodies. More importantly, according to our new standard, we re-classify the complex evolving tumor cell resistance mechanisms, including those involving exosomes, non-coding RNA and the tumor microenvironment, against EGFR monoclonal antibodies. Finally, we analyzed the limitations of EGFR monoclonal antibody therapy, and discussed the current strategies overcoming EGFR related drug resistance. This review will help us better understand the latest battles between EGFR monoclonal antibodies and resistant tumor cells, and the future directions to develop anti-tumor EGFR monoclonal antibodies with durable effects.

19.
Virol J ; 17(1): 101, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650799

RESUMO

BACKGROUND: Herpes simplex virus (HSV) can cause encephalitis. Its infected cell polypeptide 47 (ICP47), encoded by immediate-early gene US12, promotes immune escape. ICP47 was modified in the clinically approved oncolytic HSV (oHSV) T-Vec. However, transcription regulatory sequence (TRS) and transcription regulatory factor (TRF) of HSV US12 are seldom reported. METHODS: Previously, our laboratory isolated a new HSV strain named HSV-1-LXMW from a male patient with oral herpes in Beijing, China. Firstly, the genetic tree was used to analyze its genetic relationship. The US12 TRS and TRF in HSV-1-LXMW were found by using predictive software. Secondly, the further verification by the multi-sequence comparative analysis shown that the upstream DNA sequence of HSV US12 gene contained the conserved region. Finally, the results of literature search shown that the expression of transcription factors was related to the tissue affinity of HSV-1 and HSV-2, so as to increase the new understanding of the transcriptional regulation of HSV biology and oncolytic virus (OVs) therapy. RESULTS: Here we reported the transcriptional regulation region sequence of our new HSV-1-LXMW, and its close relationship with HSV-1-CR38 and HSV-1-17. Importantly we identified eight different kinds of novel TRSs and TRFs of HSV US12 for the first time, and found they are conserved among HSV-1 (c-Rel, Elk-1, Pax-4), HSV-2 (Oct-1, CF2-II, E74A, StuAp) or both HSVs (HNF-4). The TRFs c-Rel and Oct-1 are biologically functional respectively in immune escape and viral replication during HSV infection. CONCLUSIONS: Our findings have important implication to HSV biology, infection, immunity and oHSVs.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/genética , Evasão da Resposta Imune , Transcrição Gênica , China , Herpes Simples/virologia , Herpesvirus Humano 1/classificação , Humanos , Masculino , Filogenia , Replicação Viral
20.
Invest New Drugs ; 38(6): 1888-1898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32488569

RESUMO

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) contain 12 family members(CEACAM1、CEACAM3、CEACAM4、CEACAM5、CEACAM6、CEACAM7、CEACAM8、CEACAM16、CEACAM18、CEACAM19、CEACAM20 and CEACAM21)and are expressed diversely in different normal and tumor tissues. CEA (CEACAM5) has been used as a tumor biomarker since 1965. Here we review the latest research and development of the structures, expression, and function of CEACAMs in normal and tumor tissues, and their application in the tumor diagnosis, prognosis, and treatment. We focus on recent clinical studies of CEA targeted cancer immunotherapies, including bispecific antibody (BsAb) for radio-immuno-therapy and imaging, bispecific T cell engager (BiTE) and chimeric antigen receptor T cells (CAR-T). We summarize the promising clinical relevance and challenges of these approaches and give perspective view for future research. This review has important implications in understanding the diversified biology of CEACAMs in normal and tumor tissues, and their new role in tumor immunotherapy.


Assuntos
Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Proteínas Ligadas por GPI/imunologia , Imunoterapia , Neoplasias/terapia , Animais , Antígenos CD/química , Moléculas de Adesão Celular/química , Proteínas Ligadas por GPI/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA