Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3109, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661712

RESUMO

Asymmetric transport characteristic in n- and p-type conductivity has long been a fundamental difficulty in wide bandgap semiconductors. Hexagonal boron nitride (h-BN) can achieve p-type conduction, however, the n-type conductivity still remains unavailable. Here, we demonstrate a concept of orbital split induced level engineering through sacrificial impurity coupling and the realization of efficient n-type transport in 2D h-BN monolayer. We find that the O 2pz orbital has both symmetry and energy matching to the Ge 4pz orbital, which promises a strong coupling. The introduction of side-by-side O to Ge donor can effectively push up the donor level by the formation of another sacrificial deep level. We discover that a Ge-O2 trimer brings the extremely shallow donor level and very low ionization energy. By low-pressure chemical vapor deposition method, we obtain the in-situ Ge-O doping in h-BN monolayer and successfully achieve both through-plane (~100 nA) and in-plane (~20 nA) n-type conduction. We fabricate a vertically-stacked n-hBN/p-GaN heterojunction and show distinct rectification characteristics. The sacrificial impurity coupling method provides a highly viable route to overcome the n-type limitation of h-BN and paves the way for the future 2D optoelectronic devices.

2.
Small ; 18(22): e2200563, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289505

RESUMO

Solar-blind photodetectors (PDs) are widely applicable in special, military, medical, environmental, and commercial fields. However, high performance and flexible PD for deep ultraviolet (UV) range is still a challenge. Here, it is demonstrated that an upconversion of photon absorption beyond the energy bandgap is achieved in the ZnO nanoarray/h-BN heterostructure, which enables the ultrahigh responsivity of a solar-blind photodetecting paper. The direct growth of ultralong ZnO nanoarray on polycrystalline copper paper induced by h-BN 2D interlayer is obtained. Meanwhile, strong photon trapping takes place within the ZnO nanoarray forest through the cyclic state transition of surface oxygen ions, resulting in an extremely high absorption efficiency (> 99.5%). A flexible photodetecting paper is fabricated for switchable detections between near UV and deep UV signals by critical external bias. The device shows robust reliability, ultrahigh responsivity up to 700 A W-1 @ 265-276 nm, and high photoconductive gain of ≈2 × 103 . A negative differential resistance effect is revealed for driving the rapid transfer of up-converted electrons between adjacent energy valleys (Γ to A) above the critical bias (3.9 V). The discovered rationale and device structure are expected to bring high-efficiency deep UV detecting and future wearable applications.


Assuntos
Óxido de Zinco , Fótons , Reprodutibilidade dos Testes , Luz Solar , Raios Ultravioleta , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA