RESUMO
Both seed and bud banks play important roles in the recruitment and maintenance of macrophyte communities; however, few studies have investigated them simultaneously. We investigated the abundance, species composition, and seasonal patterns of seed and bud banks in two dominant macrophyte communities, Carex and Miscanthus, in the Dongting Lake wetlands. The seed densities of both communities were lower from November (after flooding) to March and increased dramatically before flooding (in May). The bud densities of the two dominant communities peaked in the coldest month of the year (January), decreased markedly in March, and were the lowest before flooding. The seed banks of the two macrophyte communities were mainly composed of annual species and a few perennial species, whereas the bud banks were composed of only dominant perennials. Furthermore, the perennial species present in bud banks did not occur in seed banks. Among the soil variables, the bud densities of both plant communities were negatively associated with soil bulk density, whereas the seed density of the Miscanthus community was positively associated with soil bulk density. Our results suggest that seed and bud banks are complementary in the potential recruitment of macrophyte communities; that is, bud banks regulate the demography of dominant perennials, and seed banks contribute to the recruitment and dispersal of annual species. Given the high abundance of annuals and near absence of the most dominant perennials in the seed bank, the bud banks of dominant perennial species should be more widely used in wetland restoration and management.
RESUMO
Single crystals of tris-(2,3,4,6,7,8,9,10-octa-hydro-pyrimido[1,2-a]azepin-1-ium) tri-µ2-iodido-bis-[tri-iodido-bis-muth(III)], (C9H17N2)3[Bi2I9], were prepared by a solvothermal method, heating a mixture of BiI3, KI, 1,8-di-aza-bicyclo-[5.4.0]undec-7-ene (DBU) and ethanol at 443â K for six days. The asymmetric unit of the title compound, which crystallizes in the monoclinic space group P21/c, contains one [Bi2I9]3- anion and three protonated DBUH+ moieties. The dinuclear [Bi2I9]3- anions, which are composed of face-sharing BiI6 3- octa-hedra, are packed in columns parallel to the [010] direction, and separated by protonated DBUH+ moieties. The optical band gap of (C9H7N2)3Bi2I9 is 2.1â eV.
RESUMO
Hybrid bismuth-containing halides are emerging as alternative candidates to lead-containing perovskites for light-harvesting applications, as Bi3+ is isoelectronic with Pb2+ and the presence of an active lone pair of electrons is expected to result in outstanding charge-carrier transport properties. Here, we report a family of one binary and three ternary iodobismuthates containing 1,4-diazabicyclo[2.2.2]octane (DABCO). These materials have been prepared solvothermally and their crystal structures, thermal stability, and optical properties determined. Reactions carried out in the presence of bismuth iodide and DABCO produced (C6H12N2)BiI3 (1), which consists of hybrid ribbons in which pairs of edge-sharing bismuth octahedra are linked by DABCO ligands. Short I···I contacts give rise to a three-dimensional network. Similar reactions in the presence of copper iodide produced (C8H17N2)2Bi2Cu2I10 (2) and [(C6H13N2)2BiCu2I7](C2H5OH) (3) in which either ethylated DABCO cations (EtDABCO)+ or monoprotonated DABCO cations (DABCOH)+ are coordinated to copper in discrete tetranuclear and trinuclear clusters, respectively. In the presence of potassium iodide, a unique three-dimensional framework, (C6H14N2)[(C6H12N2)KBiI6] (4), was formed, which contains one-dimensional hexagonal channels approximately 6 Å in diameter. The optical band gaps of these materials, which are semiconductors, range between 1.82 and 2.27 eV, with the lowest values found for the copper-containing discrete clusters. Preliminary results on the preparation of thin films are presented.
RESUMO
In species that occur over a wide range of flooding conditions, plant populations may have evolved divergent strategies as a consequence of long-term adaptation to local flooding conditions. In the present study, we investigated the effects of a flooding gradient on the growth and carbohydrate reserves of Polygonum hydropiper plants originating from low- and high-elevation habitats in the Dongting Lake wetlands. The results indicated that shoot length did not differ, whereas the total biomass and carbohydrate reserves were reduced under flooded compared to well-drained conditions for plants originating from both habitat types. However, shoot length, shoot mass, rhizome mass, and total biomass were lower in plants from low-elevation habitats than in those from high-elevation habitats in the flooded condition. Soluble sugar and starch contents in belowground biomass were higher in plants from low-elevation habitats than in those from high-elevation habitats independently of the water level. Therefore, P. hydropiper plants from low-elevation habitats exhibit a lower growth rate and more conservative energy strategy to cope with flooding in comparison with plants from high-elevation habitats. Differential strategies to cope with flooding among P. hydropiper populations are most likely a response to the flooding pressures of the habitat of origin and may potentially drive ecotype differentiation within species along flooding gradients.