Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Metabolites ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38535315

RESUMO

Enzyme-substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.

2.
PLoS Negl Trop Dis ; 17(10): e0011676, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847671

RESUMO

The mosquito Aedes aegypti is the primary vector for all four serotypes of dengue viruses (DENV1-4), which infect millions across the globe each year. Traditional insecticide programs have been transiently effective at minimizing cases; however, insecticide resistance and habitat expansion have caused cases of DENV to surge over the last decade. There is an urgent need to develop novel vector control measures, but these are contingent on a detailed understanding of host-parasite interactions. Here, we have utilized lipidomics to survey the profiles of naturally DENV-resistant (Cali-MIB) or susceptible (Cali-S) populations of Ae. aegypti, isolated from Cali, Colombia, when fed on blood meals containing DENV. Control insects were fed on a DENV-free blood meal. Midguts were dissected from Cali-MIB and Cali-S females at three time points post-infectious blood meal, 18, 24 and 36h, to identify changes in the lipidome at key times associated with the entry, replication and exit of DENV from midgut cells. We used principal component analysis to visualize broad patterns in lipidomic profiles between the treatment groups, and significance analysis of microarray to determine lipids that were altered in response to viral challenge. These data can be used to identify molecules or metabolic pathways particular to the susceptible or refractory phenotypes, and possibly lead to the generation of stable, DENV-resistant strains of Ae. aegypti.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Feminino , Vírus da Dengue/fisiologia , Colômbia , Lipidômica , Mosquitos Vetores
3.
J Vis Exp ; (199)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37747227

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has dramatically impacted human health. It continues to be a threat to modern society because many people die as a result of infection. The disease is diagnosed using serologic and molecular tests, such as the gold standard real-time polymerase chain reaction (RT-PCR). The last has several disadvantages because it requires specialized infrastructure, costly equipment, and trained personnel. Here, we present a protocol outlining the steps required to detect the SARS-CoV-2 virus using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) in human samples. The protocol includes instructions for designing primers in silico, preparing reagents, amplification, and visualization. Once standardized, this method can be easily implemented and adapted to any laboratory or point-of-care within 60 min at a low cost and using inexpensive equipment. It is adaptable to detecting different pathogens. Thus, it can potentially be used in the field and in health centers to carry out timely epidemiological surveillance.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Primers do DNA , Laboratórios
4.
J Med Case Rep ; 17(1): 194, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37173711

RESUMO

BACKGROUND: Viruses are constantly changing as a result of mutations, and new viral variants are expected to appear over time. The virus that causes coronavirus disease 2019, severe acute respiratory syndrome coronavirus 2, is not excluded from this condition. Patients with some types of immunodeficiency have been reported to experience symptoms that vary from mild to severe, or even death, after being infected with severe acute respiratory syndrome coronavirus 2. We report a case of a woman with severe hypogammaglobulinemia who developed a prolonged and fatal severe acute respiratory syndrome coronavirus 2 infection. CASE PRESENTATION: A 60-year-old mestizo female with a previous history of severe hypogammaglobulinemia manifested by recurrent pulmonary infections and follicular bronchiolitis. She received a monthly treatment of intravenous immunoglobulins and was admitted after report of a neurological manifestation related to a left thalamic inflammatory lesion, for a duration of 2 weeks of hospitalization, indicated for the study of her neurological condition, including brain biopsy. Both on admission and 1 week later, nasopharyngeal polymerase chain reaction tests for severe acute respiratory syndrome coronavirus 2 were performed and reported negative. In the third week of hospitalization, she developed pulmonary symptoms, and a positive test result for severe acute respiratory syndrome coronavirus 2 was evidenced. On Day 3, the patients' condition worsened as the infection progressed to respiratory failure and required mechanical ventilation. On Day 8 after the coronavirus disease 2019 diagnosis, the polymerase chain reaction test for severe acute respiratory syndrome coronavirus 2 showed persistent detection of the virus. Various bacterial coinfections, including Klebsiella pneumoniae and Enterobacter cloacae, were diagnosed and treated. On Day 35, her pulmonary symptoms worsened, and the results of the severe acute respiratory syndrome coronavirus 2 polymerase chain reaction test remained positive. On Day 36, despite all the respiratory support, the patient died. The severe acute respiratory syndrome coronavirus 2 virus was sequenced at the beginning and 8 days after the onset of the disease, and the strain, without obvious mutations in the gene that encodes spike protein, was identified. CONCLUSIONS: This clinical case showed persistent severe acute respiratory syndrome coronavirus 2 detection after 35 days of infection in a patient with severe hypogammaglobulinemia. The sequencing of the virus showed no mutations on the spike protein at 8 days, indicating that, in this case, the persistence of the viral detection was associated with immunodeficiency instead of changes in the viral components.


Assuntos
Agamaglobulinemia , COVID-19 , Humanos , Feminino , Pessoa de Meia-Idade , COVID-19/complicações , Agamaglobulinemia/complicações , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Pulmão
5.
PLoS One ; 17(10): e0276493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282839

RESUMO

Aedes aegypti is the primary vector of dengue, Zika, and chikungunya viruses. Studies have shown that insecticide resistance affects vector competence (VC) of some mosquito species. This study evaluates the effect of resistance to lambda-cyhalothrin and kdr V1016I mutation genotypes on the VC of Ae. aegypti strains for DENV-2, ZIKV, and CHIKV. Three Ae. aegypti strains with gradual lambda-cyhalothrin resistance (susceptible, resistant, and highly resistant) were infected with DENV-2, ZIKV, and CHIKV. Individual mosquitoes were tested to detect virus infection in the abdomen and head-salivary glands, using RT-PCR, and genotypes for V1016I mutations using allele-specific PCR. Recorded VC variables were midgut infection rate (MIR), dissemination rate (DIR), and dissemination efficiency (DIE). Lambda-cyhalothrin resistance affects differentially VC variables for ZIKV, DENV-2, and CHIKV. For ZIKV, an apparent gradual increase in DIR and DIE with the increase in insecticide resistance was observed. For DENV-2 the MIR and DIE were higher in insecticide resistant strains. For CHIKV, only MIR could be evaluated, this variable was higher in insecticide resistance strains. The presence of kdr V1016I mutation on mosquito resistant strains did not affect VC variables for three study viruses.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Animais , Zika virus/genética , Vírus Chikungunya/genética , Colômbia , Mosquitos Vetores/genética
6.
Sci Rep ; 12(1): 14030, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982147

RESUMO

As the world enters its second year of the pandemic caused by SARS-CoV-2, intense efforts have been directed to develop an effective diagnosis, prevention, and treatment strategies. One promising drug target to design COVID-19 treatments is the SARS-CoV-2 Mpro. To date, a comparative understanding of Mpro dynamic stereoelectronic interactions with either covalent or non-covalent inhibitors (depending on their interaction with a pocket called S1' or oxyanion hole) has not been still achieved. In this study, we seek to fill this knowledge gap using a cascade in silico protocol of docking, molecular dynamics simulations, and MM/PBSA in order to elucidate pharmacophore models for both types of inhibitors. After docking and MD analysis, a set of complex-based pharmacophore models was elucidated for covalent and non-covalent categories making use of the residue bonding point feature. The highest ranked models exhibited ROC-AUC values of 0.93 and 0.73, respectively for each category. Interestingly, we observed that the active site region of Mpro protein-ligand complex undergoes large conformational changes, especially within the S2 and S4 subsites. The results reported in this article may be helpful in virtual screening (VS) campaigns to guide the design and discovery of novel small-molecule therapeutic agents against SARS-CoV-2 Mpro protein.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química
7.
Mem Inst Oswaldo Cruz ; 116: e200547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076041

RESUMO

BACKGROUND: Forty percent of the world's population live in areas where they are at risk from dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Dengue viruses are transmitted primarily by the mosquito Aedes aegypti. In Cali, Colombia, approximately 30% of field collected Ae. aegypti are naturally refractory to all four dengue serotypes. OBJECTIVES: Use RNA-sequencing to identify those genes that determine refractoriness in feral mosquitoes to dengue. This information can be used in gene editing strategies to reduce dengue transmission. METHODS: We employed a full factorial design, analyzing differential gene expression across time (24, 36 and 48 h post bloodmeal), feeding treatment (blood or blood + dengue-2) and strain (susceptible or refractory). Sequences were aligned to the reference Ae. aegypti genome for identification, assembled to visualize transcript structure, and analyzed for dynamic gene expression changes. A variety of clustering techniques was used to identify the differentially expressed genes. FINDINGS: We identified a subset of genes that likely assist dengue entry and replication in susceptible mosquitoes and contribute to vector competence. MAIN CONCLUSIONS: The differential expression of specific genes by refractory and susceptible mosquitoes could determine the phenotype, and may be used to in gene editing strategies to reduce dengue transmission.


Assuntos
Aedes , Vírus da Dengue , Dengue , Aedes/genética , Animais , Colômbia , Vírus da Dengue/genética , Mosquitos Vetores/genética , RNA , Transcriptoma/genética
8.
Mem. Inst. Oswaldo Cruz ; 116: e200547, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1250365

RESUMO

BACKGROUND Forty percent of the world's population live in areas where they are at risk from dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Dengue viruses are transmitted primarily by the mosquito Aedes aegypti. In Cali, Colombia, approximately 30% of field collected Ae. aegypti are naturally refractory to all four dengue serotypes. OBJECTIVES Use RNA-sequencing to identify those genes that determine refractoriness in feral mosquitoes to dengue. This information can be used in gene editing strategies to reduce dengue transmission. METHODS We employed a full factorial design, analyzing differential gene expression across time (24, 36 and 48 h post bloodmeal), feeding treatment (blood or blood + dengue-2) and strain (susceptible or refractory). Sequences were aligned to the reference Ae. aegypti genome for identification, assembled to visualize transcript structure, and analyzed for dynamic gene expression changes. A variety of clustering techniques was used to identify the differentially expressed genes. FINDINGS We identified a subset of genes that likely assist dengue entry and replication in susceptible mosquitoes and contribute to vector competence. MAIN CONCLUSIONS The differential expression of specific genes by refractory and susceptible mosquitoes could determine the phenotype, and may be used to in gene editing strategies to reduce dengue transmission.


Assuntos
Animais , Aedes , Dengue , Vírus da Dengue , RNA , Colômbia , Transcriptoma/genética , Mosquitos Vetores/genética
9.
Microbiologyopen ; 8(10): e903, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31297981

RESUMO

Tropical ecosystems hold an extremely diverse array of endophytic fungi, but their potential use still remains to be explored. In this study, we isolated an endophytic fungus from the leaves of Otoba gracilipes, a medicinal tree from a tropical rainforest in Colombia. Following isolation and cultivation, we evaluated its extracellular crude extract for antioxidant activity. Using traditional and molecular methods (ITS1, NL1 regions), the endophyte was identified as Fusarium oxysporum. Fresh spores from the fungal isolate were inoculated in liquid media (potato dextrose broth [PDB] and potato dextrose-yeast extract broth [PDYB]) and centrifuged for recovering extracellular polysaccharides from the exhausted medium after 30 days of cultivation. Crude extracts were recovered, purified, lyophilized, and evaluated for their ability to inactivate the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The extracts obtained from PDB culture media had a 51.5% of scavenging effect on DPPH after 5 min of reaction compared with the extracts from PDBY (26.4%), which suggests a high antioxidant potential of these fungal extracts. Thus, our results suggest other fungi from tropical ecosystems should be explored as potential sources of novel enzymes and other metabolites with bioactivity.


Assuntos
Antioxidantes/metabolismo , Produtos Biológicos/metabolismo , Endófitos/metabolismo , Fusarium/metabolismo , Myristicaceae/microbiologia , Antioxidantes/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Colômbia , Misturas Complexas/isolamento & purificação , Misturas Complexas/metabolismo , Meios de Cultura/química , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fusarium/classificação , Fusarium/genética , Fusarium/isolamento & purificação , Metagenômica , Técnicas Microbiológicas , Folhas de Planta/microbiologia , Clima Tropical
10.
Insect Sci ; 26(4): 635-648, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29389079

RESUMO

Aedes (Stegomyia) aegypti, the principal global vector of dengue viruses, has differences in its susceptibility to dengue virus infection. We compared the global expression of genes in the midguts of Colombian Ae. aegypti dengue-susceptible (Cali-S) and dengue-refractory (Cali-MIB) field derived strains after ingesting either a sugarmeal, a bloodmeal, or a bloodmeal containing dengue virus serotype 2 (DENV-2). Microarray-based transcriptome analysis among treatments indicated a total of 4725 transcripts with differential expression between the two strains. Eleven genes were selected from different functional groups based on their significant up or down expression levels as well as reports in the literature suggesting they are associated with dengue virus elimination. We measured mRNA abundance of these 11 genes at 0, 8, 24, and 36 h postinfection using quantitative real time PCR (qPCR) to confirm the microarray results and assess any temporal patterns. Four genes were selected (Gram-negative binding protein-GNBP [AAEL009176], Niemann Pick Type-C2-NPC2 [AAEL015136], Keratinocyte lectin [AAEL009842], and Cathepsin-b [AAEL007585]) for knockdown experiments using RNA interference (RNAi) methodology to determine the phenotype (DENV-2 susceptible or refractory). Silencing GNBP, Cathepsin-b and Keratinocyte lectin reduced the percentage of mosquitoes with disseminated virus in the Cali-S strain to 8%, 20%, and 12% respectively compared with 96% in the controls. Silencing of NPC2 increased the percentage of mosquitos with disseminated virus infections in Cali-MIB to 66% compared with 35% in the controls. This study provides insight into genes that may contribute to the Cali-S susceptible and Cali-MIB refractory phenotypes in Ae. aegypti.


Assuntos
Aedes/genética , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno/genética , Proteínas de Insetos/fisiologia , Mosquitos Vetores/genética , Aedes/imunologia , Aedes/virologia , Animais , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia
11.
J Insect Sci ; 18(6)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508201

RESUMO

The composition, abundance, and diversity of midgut bacteria in mosquitoes can influence pathogen transmission. We used 16S rRNA microbiome profiling to survey midgut microbial diversity in pooled samples of laboratory colonized dengue-refractory, Cali-MIB, and dengue-susceptible, Cali-S Aedes aegypti (Linnaeus). The 16S rRNA sequences from the sugar-fed midguts of adult females clustered to 63 amplicon sequence variants (ASVs), primarily from Proteobacteria, Firmicutes, Flavobacteria, and Actinobacteria. An average of five ASVs dominated the midguts, and most ASVs were present in both Cali-MIB and Cali-S midguts. No differences in abundance were noted at any phylogenetic level (Phylum, Class, Order, Family, Genus) by analysis of composition of microbiome (w = 0). No community diversity metrics were significantly different between refractory and susceptible mosquitoes. These data suggest that phenotypic differences in the susceptibility to dengue virus between Cali-MIB and Cali-S are not likely due to major differences in midgut bacterial communities.


Assuntos
Aedes/microbiologia , Bactérias/classificação , Bactérias/virologia , Biodiversidade , Animais , Trato Gastrointestinal/microbiologia , Filogenia
12.
PLoS One ; 8(4): e61187, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593426

RESUMO

Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain.


Assuntos
Aedes/genética , Apoptose/genética , Vírus da Dengue/patogenicidade , Aedes/virologia , Animais , Sequência de Bases , Primers do DNA , Técnicas de Silenciamento de Genes , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA